Documentation

Mathlib.Analysis.LocallyConvex.WithSeminorms

Topology induced by a family of seminorms #

Main definitions #

Main statements #

Continuity of semilinear maps #

If E and F are topological vector space with the topology induced by a family of seminorms, then we have a direct method to prove that a linear map is continuous:

If the topology of a space E is induced by a family of seminorms, then we can characterize von Neumann boundedness in terms of that seminorm family. Together with LinearMap.continuous_of_locally_bounded this gives general criterion for continuity.

Tags #

seminorm, locally convex

@[reducible, inline]
abbrev SeminormFamily (R : Type u_1) (E : Type u_6) (ΞΉ : Type u_9) [SeminormedRing R] [AddCommGroup E] [Module R E] :
Type (max u_9 u_6)

An abbreviation for indexed families of seminorms. This is mainly to allow for dot-notation.

Equations
Instances For
    def SeminormFamily.basisSets {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) :
    Set (Set E)

    The sets of a filter basis for the neighborhood filter of 0.

    Equations
    Instances For
      theorem SeminormFamily.basisSets_iff {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) {U : Set E} :
      U ∈ p.basisSets ↔ βˆƒ (i : Finset ΞΉ) (r : ℝ), 0 < r ∧ U = (i.sup p).ball 0 r
      theorem SeminormFamily.basisSets_mem {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) (i : Finset ΞΉ) {r : ℝ} (hr : 0 < r) :
      (i.sup p).ball 0 r ∈ p.basisSets
      theorem SeminormFamily.basisSets_singleton_mem {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) (i : ΞΉ) {r : ℝ} (hr : 0 < r) :
      (p i).ball 0 r ∈ p.basisSets
      theorem SeminormFamily.basisSets_univ_mem {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) :
      theorem SeminormFamily.basisSets_nonempty {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) :
      theorem SeminormFamily.basisSets_intersect {R : Type u_1} {E : Type u_6} {ι : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ι) (U V : Set E) (hU : U ∈ p.basisSets) (hV : V ∈ p.basisSets) :
      βˆƒ z ∈ p.basisSets, z βŠ† U ∩ V
      theorem SeminormFamily.basisSets_zero {R : Type u_1} {E : Type u_6} {ι : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ι) (U : Set E) (hU : U ∈ p.basisSets) :
      0 ∈ U
      theorem SeminormFamily.basisSets_add {R : Type u_1} {E : Type u_6} {ι : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ι) (U : Set E) (hU : U ∈ p.basisSets) :
      βˆƒ V ∈ p.basisSets, V + V βŠ† U
      theorem SeminormFamily.basisSets_neg {R : Type u_1} {E : Type u_6} {ι : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ι) (U : Set E) (hU' : U ∈ p.basisSets) :
      βˆƒ V ∈ p.basisSets, V βŠ† (fun (x : E) => -x) ⁻¹' U
      def SeminormFamily.addGroupFilterBasis {R : Type u_1} {E : Type u_6} {ΞΉ : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ΞΉ) :

      The addGroupFilterBasis induced by the filter basis Seminorm.basisSets.

      Equations
      Instances For
        theorem SeminormFamily.basisSets_smul_right {R : Type u_1} {E : Type u_6} {ι : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ι) (v : E) (U : Set E) (hU : U ∈ p.basisSets) :
        theorem SeminormFamily.basisSets_smul {R : Type u_1} {E : Type u_6} {ι : Type u_9} [SeminormedRing R] [AddCommGroup E] [Module R E] (p : SeminormFamily R E ι) (U : Set E) (hU : U ∈ p.basisSets) :
        βˆƒ V ∈ nhds 0, βˆƒ W ∈ p.addGroupFilterBasis.sets, V β€’ W βŠ† U
        theorem SeminormFamily.basisSets_smul_left {π•œ : Type u_2} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup F] [Module π•œ F] (p : SeminormFamily π•œ F ΞΉ) (x : π•œ) (U : Set F) (hU : U ∈ p.basisSets) :
        βˆƒ V ∈ p.addGroupFilterBasis.sets, V βŠ† (fun (y : F) => x β€’ y) ⁻¹' U
        def SeminormFamily.moduleFilterBasis {π•œ : Type u_2} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup F] [Module π•œ F] (p : SeminormFamily π•œ F ΞΉ) :

        The moduleFilterBasis induced by the filter basis Seminorm.basisSets.

        Equations
        Instances For
          theorem SeminormFamily.filter_eq_iInf {π•œ : Type u_2} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup F] [Module π•œ F] (p : SeminormFamily π•œ F ΞΉ) :
          p.moduleFilterBasis.filter = β¨… (i : ΞΉ), Filter.comap (⇑(p i)) (nhds 0)
          theorem SeminormFamily.basisSets_mem_nhds {π•œ : Type u_11} {E : Type u_12} {ΞΉ : Type u_13} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] (p : SeminormFamily π•œ E ΞΉ) (hp : βˆ€ (i : ΞΉ), Continuous ⇑(p i)) (U : Set E) (hU : U ∈ p.basisSets) :

          If a family of seminorms is continuous, then their basis sets are neighborhoods of zero.

          def Seminorm.IsBounded {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} {ΞΉ' : Type u_10} [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] [SeminormedRing π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (p : ΞΉ β†’ Seminorm π•œ E) (q : ΞΉ' β†’ Seminorm π•œβ‚‚ F) (f : E β†’β‚›β‚—[σ₁₂] F) :

          The proposition that a linear map is bounded between spaces with families of seminorms.

          Equations
          Instances For
            theorem Seminorm.isBounded_const {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] [SeminormedRing π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (ΞΉ' : Type u_11) [Nonempty ΞΉ'] {p : ΞΉ β†’ Seminorm π•œ E} {q : Seminorm π•œβ‚‚ F} (f : E β†’β‚›β‚—[σ₁₂] F) :
            IsBounded p (fun (x : ΞΉ') => q) f ↔ βˆƒ (s : Finset ΞΉ) (C : NNReal), q.comp f ≀ C β€’ s.sup p
            theorem Seminorm.const_isBounded {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ' : Type u_10} [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] [SeminormedRing π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (ΞΉ : Type u_11) [Nonempty ΞΉ] {p : Seminorm π•œ E} {q : ΞΉ' β†’ Seminorm π•œβ‚‚ F} (f : E β†’β‚›β‚—[σ₁₂] F) :
            IsBounded (fun (x : ΞΉ) => p) q f ↔ βˆ€ (i : ΞΉ'), βˆƒ (C : NNReal), (q i).comp f ≀ C β€’ p
            theorem Seminorm.isBounded_sup {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} {ΞΉ' : Type u_10} [SeminormedRing π•œ] [AddCommGroup E] [Module π•œ E] [SeminormedRing π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {p : ΞΉ β†’ Seminorm π•œ E} {q : ΞΉ' β†’ Seminorm π•œβ‚‚ F} {f : E β†’β‚›β‚—[σ₁₂] F} (hf : IsBounded p q f) (s' : Finset ΞΉ') :
            βˆƒ (C : NNReal) (s : Finset ΞΉ), (s'.sup q).comp f ≀ C β€’ s.sup p
            structure WithSeminorms {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] (p : SeminormFamily π•œ E ΞΉ) [topology : TopologicalSpace E] :

            The proposition that the topology of E is induced by a family of seminorms p.

            Instances For
              class PolynormableSpace (π•œ : Type u_2) (E : Type u_6) [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [topology : TopologicalSpace E] :

              A topological vector space E is polynormable over π•œ if its topology is induced by some family of π•œ-seminorms. Equivalently, its topology is induced by all its continuous seminorm.

              If π•œ is RCLike, this is equivalent to LocallyConvexSpace π•œ E.

              Instances
                theorem WithSeminorms.withSeminorms_eq {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [t : TopologicalSpace E] (hp : WithSeminorms p) :
                theorem PolynormableSpace.withSeminorms (π•œ : Type u_2) (E : Type u_6) [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [PolynormableSpace π•œ E] :
                WithSeminorms fun (p : { p : Seminorm π•œ E // Continuous ⇑p }) => ↑p
                theorem WithSeminorms.topologicalAddGroup {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                theorem WithSeminorms.continuousSMul {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                ContinuousSMul π•œ E
                theorem WithSeminorms.hasBasis {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                (nhds 0).HasBasis (fun (s : Set E) => s ∈ p.basisSets) id
                theorem WithSeminorms.hasBasis_zero_ball {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                (nhds 0).HasBasis (fun (sr : Finset ΞΉ Γ— ℝ) => 0 < sr.2) fun (sr : Finset ΞΉ Γ— ℝ) => (sr.1.sup p).ball 0 sr.2
                theorem WithSeminorms.hasBasis_ball {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) {x : E} :
                (nhds x).HasBasis (fun (sr : Finset ΞΉ Γ— ℝ) => 0 < sr.2) fun (sr : Finset ΞΉ Γ— ℝ) => (sr.1.sup p).ball x sr.2
                theorem WithSeminorms.mem_nhds_iff {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) (x : E) (U : Set E) :
                U ∈ nhds x ↔ βˆƒ (s : Finset ΞΉ), βˆƒ r > 0, (s.sup p).ball x r βŠ† U

                The x-neighbourhoods of a space whose topology is induced by a family of seminorms are exactly the sets which contain seminorm balls around x.

                theorem WithSeminorms.isOpen_iff_mem_balls {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) (U : Set E) :
                IsOpen U ↔ βˆ€ x ∈ U, βˆƒ (s : Finset ΞΉ), βˆƒ r > 0, (s.sup p).ball x r βŠ† U

                The open sets of a space whose topology is induced by a family of seminorms are exactly the sets which contain seminorm balls around all of their points.

                theorem WithSeminorms.T1_of_separating {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) (h : βˆ€ (x : E), x β‰  0 β†’ βˆƒ (i : ΞΉ), (p i) x β‰  0) :

                A separating family of seminorms induces a T₁ topology.

                theorem WithSeminorms.separating_of_T1 {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} [T1Space E] (hp : WithSeminorms p) (x : E) (hx : x β‰  0) :
                βˆƒ (i : ΞΉ), (p i) x β‰  0

                A family of seminorms inducing a T₁ topology is separating.

                theorem WithSeminorms.separating_iff_T1 {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                (βˆ€ (x : E), x β‰  0 β†’ βˆƒ (i : ΞΉ), (p i) x β‰  0) ↔ T1Space E

                A family of seminorms is separating iff it induces a T₁ topology.

                theorem WithSeminorms.tendsto_nhds' {π•œ : Type u_2} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) (u : F β†’ E) {f : Filter F} (yβ‚€ : E) :
                Filter.Tendsto u f (nhds yβ‚€) ↔ βˆ€ (s : Finset ΞΉ) (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆ€αΆ  (x : F) in f, (s.sup p) (u x - yβ‚€) < Ξ΅

                Convergence along filters for WithSeminorms.

                Variant with Finset.sup.

                theorem WithSeminorms.tendsto_nhds {π•œ : Type u_2} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) (u : F β†’ E) {f : Filter F} (yβ‚€ : E) :
                Filter.Tendsto u f (nhds yβ‚€) ↔ βˆ€ (i : ΞΉ) (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆ€αΆ  (x : F) in f, (p i) (u x - yβ‚€) < Ξ΅

                Convergence along filters for WithSeminorms.

                theorem WithSeminorms.tendsto_nhds_atTop {π•œ : Type u_2} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} [SemilatticeSup F] [Nonempty F] (hp : WithSeminorms p) (u : F β†’ E) (yβ‚€ : E) :
                Filter.Tendsto u Filter.atTop (nhds yβ‚€) ↔ βˆ€ (i : ΞΉ) (Ξ΅ : ℝ), 0 < Ξ΅ β†’ βˆƒ (xβ‚€ : F), βˆ€ (x : F), xβ‚€ ≀ x β†’ (p i) (u x - yβ‚€) < Ξ΅

                Limit β†’ ∞ for WithSeminorms.

                theorem SeminormFamily.withSeminorms_of_nhds {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [t : TopologicalSpace E] [IsTopologicalAddGroup E] (p : SeminormFamily π•œ E ΞΉ) (h : nhds 0 = p.moduleFilterBasis.filter) :
                theorem SeminormFamily.withSeminorms_of_hasBasis {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [t : TopologicalSpace E] [IsTopologicalAddGroup E] (p : SeminormFamily π•œ E ΞΉ) (h : (nhds 0).HasBasis (fun (s : Set E) => s ∈ p.basisSets) id) :
                theorem SeminormFamily.withSeminorms_iff_nhds_eq_iInf {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [t : TopologicalSpace E] [IsTopologicalAddGroup E] (p : SeminormFamily π•œ E ΞΉ) :
                WithSeminorms p ↔ nhds 0 = β¨… (i : ΞΉ), Filter.comap (⇑(p i)) (nhds 0)
                theorem SeminormFamily.withSeminorms_iff_topologicalSpace_eq_iInf {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [t : TopologicalSpace E] [IsTopologicalAddGroup E] (p : SeminormFamily π•œ E ΞΉ) :

                The topology induced by a family of seminorms is exactly the infimum of the ones induced by each seminorm individually. We express this as a characterization of WithSeminorms p.

                theorem WithSeminorms.continuous_seminorm {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [t : TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) (i : ΞΉ) :
                Continuous ⇑(p i)
                theorem WithSeminorms.toPolynormableSpace {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [t : TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                theorem SeminormFamily.withSeminorms_iff_uniformSpace_eq_iInf {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [u : UniformSpace E] [IsUniformAddGroup E] (p : SeminormFamily π•œ E ΞΉ) :

                The uniform structure induced by a family of seminorms is exactly the infimum of the ones induced by each seminorm individually. We express this as a characterization of WithSeminorms p.

                theorem norm_withSeminorms (π•œ : Type u_11) (E : Type u_12) [NormedField π•œ] [SeminormedAddCommGroup E] [NormedSpace π•œ E] :
                WithSeminorms fun (x : Fin 1) => normSeminorm π•œ E

                The topology of a NormedSpace π•œ E is induced by the seminorm normSeminorm π•œ E.

                instance instPolynormableSpace {π•œ : Type u_2} {E : Type u_6} [NormedField π•œ] [SeminormedAddCommGroup E] [NormedSpace π•œ E] :

                A (semi-)normed space is polynormable.

                theorem WithSeminorms.isVonNBounded_iff_finset_seminorm_bounded {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] {s : Set E} (hp : WithSeminorms p) :
                Bornology.IsVonNBounded π•œ s ↔ βˆ€ (I : Finset ΞΉ), βˆƒ r > 0, βˆ€ x ∈ s, (I.sup p) x < r
                theorem WithSeminorms.image_isVonNBounded_iff_finset_seminorm_bounded {π•œ : Type u_2} {E : Type u_6} {G : Type u_8} {ΞΉ : Type u_9} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] (f : G β†’ E) {s : Set G} (hp : WithSeminorms p) :
                Bornology.IsVonNBounded π•œ (f '' s) ↔ βˆ€ (I : Finset ΞΉ), βˆƒ r > 0, βˆ€ x ∈ s, (I.sup p) (f x) < r
                theorem WithSeminorms.isVonNBounded_iff_seminorm_bounded {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] {s : Set E} (hp : WithSeminorms p) :
                Bornology.IsVonNBounded π•œ s ↔ βˆ€ (i : ΞΉ), βˆƒ r > 0, βˆ€ x ∈ s, (p i) x < r
                theorem WithSeminorms.image_isVonNBounded_iff_seminorm_bounded {π•œ : Type u_2} {E : Type u_6} {G : Type u_8} {ΞΉ : Type u_9} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] (f : G β†’ E) {s : Set G} (hp : WithSeminorms p) :
                Bornology.IsVonNBounded π•œ (f '' s) ↔ βˆ€ (i : ΞΉ), βˆƒ r > 0, βˆ€ x ∈ s, (p i) (f x) < r
                theorem withSeminorms_iff_mem_nhds_isVonNBounded {π•œ : Type u_2} {E : Type u_6} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousConstSMul π•œ E] {p : Seminorm π•œ E} :
                (WithSeminorms fun (x : Fin 1) => p) ↔ p.ball 0 1 ∈ nhds 0 ∧ Bornology.IsVonNBounded π•œ (p.ball 0 1)

                In a topological vector space, the topology is generated by a single seminorm p iff the unit ball for this seminorm is a bounded neighborhood of 0.

                theorem Seminorm.continuous_of_continuous_comp {𝕝 : Type u_4} {𝕝₂ : Type u_5} {E : Type u_6} {F : Type u_7} {ΞΉ' : Type u_10} [AddCommGroup E] [NormedField 𝕝] [Module 𝕝 E] [AddCommGroup F] [NormedField 𝕝₂] [Module 𝕝₂ F] {τ₁₂ : 𝕝 β†’+* 𝕝₂} [RingHomIsometric τ₁₂] {q : SeminormFamily 𝕝₂ F ΞΉ'} [TopologicalSpace E] [IsTopologicalAddGroup E] [TopologicalSpace F] (hq : WithSeminorms q) (f : E β†’β‚›β‚—[τ₁₂] F) (hf : βˆ€ (i : ΞΉ'), Continuous ⇑((q i).comp f)) :
                Continuous ⇑f
                theorem Seminorm.continuous_iff_continuous_comp {𝕝 : Type u_4} {𝕝₂ : Type u_5} {E : Type u_6} {F : Type u_7} {ΞΉ' : Type u_10} [AddCommGroup E] [NormedField 𝕝] [Module 𝕝 E] [AddCommGroup F] [NormedField 𝕝₂] [Module 𝕝₂ F] {τ₁₂ : 𝕝 β†’+* 𝕝₂} [RingHomIsometric τ₁₂] {q : SeminormFamily 𝕝₂ F ΞΉ'} [TopologicalSpace E] [IsTopologicalAddGroup E] [TopologicalSpace F] (hq : WithSeminorms q) (f : E β†’β‚›β‚—[τ₁₂] F) :
                Continuous ⇑f ↔ βˆ€ (i : ΞΉ'), Continuous ⇑((q i).comp f)
                theorem Seminorm.continuous_from_bounded {𝕝 : Type u_4} {𝕝₂ : Type u_5} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} {ΞΉ' : Type u_10} [AddCommGroup E] [NormedField 𝕝] [Module 𝕝 E] [AddCommGroup F] [NormedField 𝕝₂] [Module 𝕝₂ F] {τ₁₂ : 𝕝 β†’+* 𝕝₂} [RingHomIsometric τ₁₂] {p : SeminormFamily 𝕝 E ΞΉ} {q : SeminormFamily 𝕝₂ F ΞΉ'} {x✝ : TopologicalSpace E} (hp : WithSeminorms p) {x✝¹ : TopologicalSpace F} (hq : WithSeminorms q) (f : E β†’β‚›β‚—[τ₁₂] F) (hf : IsBounded p q f) :
                Continuous ⇑f
                theorem Seminorm.cont_withSeminorms_normedSpace {𝕝 : Type u_4} {𝕝₂ : Type u_5} {E : Type u_6} {ΞΉ : Type u_9} [AddCommGroup E] [NormedField 𝕝] [Module 𝕝 E] [NormedField 𝕝₂] {τ₁₂ : 𝕝 β†’+* 𝕝₂} [RingHomIsometric τ₁₂] (F : Type u_11) [SeminormedAddCommGroup F] [NormedSpace 𝕝₂ F] [TopologicalSpace E] {p : ΞΉ β†’ Seminorm 𝕝 E} (hp : WithSeminorms p) (f : E β†’β‚›β‚—[τ₁₂] F) (hf : βˆƒ (s : Finset ΞΉ) (C : NNReal), (normSeminorm 𝕝₂ F).comp f ≀ C β€’ s.sup p) :
                Continuous ⇑f
                theorem Seminorm.cont_normedSpace_to_withSeminorms {𝕝 : Type u_4} {𝕝₂ : Type u_5} {F : Type u_7} {ΞΉ : Type u_9} [NormedField 𝕝] [AddCommGroup F] [NormedField 𝕝₂] [Module 𝕝₂ F] {τ₁₂ : 𝕝 β†’+* 𝕝₂} [RingHomIsometric τ₁₂] (E : Type u_11) [SeminormedAddCommGroup E] [NormedSpace 𝕝 E] [TopologicalSpace F] {q : ΞΉ β†’ Seminorm 𝕝₂ F} (hq : WithSeminorms q) (f : E β†’β‚›β‚—[τ₁₂] F) (hf : βˆ€ (i : ΞΉ), βˆƒ (C : NNReal), (q i).comp f ≀ C β€’ normSeminorm 𝕝 E) :
                Continuous ⇑f
                theorem WithSeminorms.equicontinuous_TFAE {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ' : Type u_10} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {ΞΊ : Type u_11} {q : SeminormFamily π•œβ‚‚ F ΞΉ'} [UniformSpace E] [IsUniformAddGroup E] [u : UniformSpace F] [hu : IsUniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π•œ E] (f : ΞΊ β†’ E β†’β‚›β‚—[σ₁₂] F) :
                [EquicontinuousAt (DFunLike.coe ∘ f) 0, Equicontinuous (DFunLike.coe ∘ f), UniformEquicontinuous (DFunLike.coe ∘ f), βˆ€ (i : ΞΉ'), βˆƒ (p : Seminorm π•œ E), Continuous ⇑p ∧ βˆ€ (k : ΞΊ), (q i).comp (f k) ≀ p, βˆ€ (i : ΞΉ'), BddAbove (Set.range fun (k : ΞΊ) => (q i).comp (f k)) ∧ Continuous (⨆ (k : ΞΊ), ⇑((q i).comp (f k)))].TFAE

                Let E and F be two topological vector spaces over a NontriviallyNormedField, and assume that the topology of F is generated by some family of seminorms q. For a family f of linear maps from E to F, the following are equivalent:

                • f is equicontinuous at 0.
                • f is equicontinuous.
                • f is uniformly equicontinuous.
                • For each q i, the family of seminorms k ↦ (q i) ∘ (f k) is bounded by some continuous seminorm p on E.
                • For each q i, the seminorm βŠ” k, (q i) ∘ (f k) is well-defined and continuous.

                In particular, if you can determine all continuous seminorms on E, that gives you a complete characterization of equicontinuity for linear maps from E to F. For example E and F are both normed spaces, you get NormedSpace.equicontinuous_TFAE.

                theorem WithSeminorms.uniformEquicontinuous_iff_exists_continuous_seminorm {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ' : Type u_10} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {ΞΊ : Type u_11} {q : SeminormFamily π•œβ‚‚ F ΞΉ'} [UniformSpace E] [IsUniformAddGroup E] [u : UniformSpace F] [IsUniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π•œ E] (f : ΞΊ β†’ E β†’β‚›β‚—[σ₁₂] F) :
                UniformEquicontinuous (DFunLike.coe ∘ f) ↔ βˆ€ (i : ΞΉ'), βˆƒ (p : Seminorm π•œ E), Continuous ⇑p ∧ βˆ€ (k : ΞΊ), (q i).comp (f k) ≀ p
                theorem WithSeminorms.uniformEquicontinuous_iff_bddAbove_and_continuous_iSup {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ' : Type u_10} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] {ΞΊ : Type u_11} {q : SeminormFamily π•œβ‚‚ F ΞΉ'} [UniformSpace E] [IsUniformAddGroup E] [u : UniformSpace F] [IsUniformAddGroup F] (hq : WithSeminorms q) [ContinuousSMul π•œ E] (f : ΞΊ β†’ E β†’β‚›β‚—[σ₁₂] F) :
                UniformEquicontinuous (DFunLike.coe ∘ f) ↔ βˆ€ (i : ΞΉ'), BddAbove (Set.range fun (k : ΞΊ) => (q i).comp (f k)) ∧ Continuous (⨆ (k : ΞΊ), ⇑((q i).comp (f k)))
                theorem WithSeminorms.congr {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} {ΞΉ' : Type u_10} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} {q : SeminormFamily π•œ E ΞΉ'} [t : TopologicalSpace E] (hp : WithSeminorms p) (hpq : Seminorm.IsBounded p q LinearMap.id) (hqp : Seminorm.IsBounded q p LinearMap.id) :

                Two families of seminorms p and q on the same space generate the same topology if each p i is bounded by some C β€’ Finset.sup s q and vice-versa.

                We formulate these boundedness assumptions as Seminorm.IsBounded q p LinearMap.id (and vice-versa) to reuse the API. Furthermore, we don't actually state it as an equality of topologies but as a way to deduce WithSeminorms q from WithSeminorms p, since this should be more useful in practice.

                theorem WithSeminorms.finset_sups {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] (hp : WithSeminorms p) :
                WithSeminorms fun (s : Finset ΞΉ) => s.sup p
                theorem WithSeminorms.partial_sups {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [Preorder ΞΉ] [LocallyFiniteOrderBot ΞΉ] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] (hp : WithSeminorms p) :
                WithSeminorms fun (i : ΞΉ) => (Finset.Iic i).sup p
                theorem WithSeminorms.congr_equiv {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} {ΞΉ' : Type u_10} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [t : TopologicalSpace E] (hp : WithSeminorms p) (e : ΞΉ' ≃ ΞΉ) :
                WithSeminorms (p ∘ ⇑e)
                theorem Seminorm.map_eq_zero_of_norm_eq_zero {π•œ : Type u_2} {F : Type u_7} [NontriviallyNormedField π•œ] [SeminormedAddCommGroup F] [NormedSpace π•œ F] (q : Seminorm π•œ F) (hq : Continuous ⇑q) {x : F} (hx : β€–xβ€– = 0) :
                q x = 0

                In a semi-NormedSpace, a continuous seminorm is zero on elements of norm 0.

                @[deprecated Seminorm.map_eq_zero_of_norm_eq_zero (since := "2025-11-15")]
                theorem Seminorm.map_eq_zero_of_norm_zero {π•œ : Type u_2} {F : Type u_7} [NontriviallyNormedField π•œ] [SeminormedAddCommGroup F] [NormedSpace π•œ F] (q : Seminorm π•œ F) (hq : Continuous ⇑q) {x : F} (hx : β€–xβ€– = 0) :
                q x = 0

                Alias of Seminorm.map_eq_zero_of_norm_eq_zero.


                In a semi-NormedSpace, a continuous seminorm is zero on elements of norm 0.

                theorem Seminorm.bound_of_continuous_normedSpace {π•œ : Type u_2} {F : Type u_7} [NontriviallyNormedField π•œ] [SeminormedAddCommGroup F] [NormedSpace π•œ F] (q : Seminorm π•œ F) (hq : Continuous ⇑q) :
                βˆƒ (C : ℝ), 0 < C ∧ βˆ€ (x : F), q x ≀ C * β€–xβ€–

                Let F be a semi-NormedSpace over a NontriviallyNormedField, and let q be a seminorm on F. If q is continuous, then it is uniformly controlled by the norm, that is there is some C > 0 such that βˆ€ x, q x ≀ C * β€–xβ€–. The continuity ensures boundedness on a ball of some radius Ξ΅. The nontriviality of the norm is then used to rescale any element into an element of norm in [Ξ΅/C, Ξ΅[, thus with a controlled image by q. The control of q at the original element follows by rescaling.

                theorem Seminorm.bound_of_continuous {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {p : SeminormFamily π•œ E ΞΉ} [t : TopologicalSpace E] (hp : WithSeminorms p) (q : Seminorm π•œ E) (hq : Continuous ⇑q) :
                βˆƒ (s : Finset ΞΉ) (C : NNReal), C β‰  0 ∧ q ≀ C β€’ s.sup p

                Let E be a topological vector space (over a NontriviallyNormedField) whose topology is generated by some family of seminorms p, and let q be a seminorm on E. If q is continuous, then it is uniformly controlled by finitely many seminorms of p, that is there is some finset s of the index set and some C > 0 such that q ≀ C β€’ s.sup p.

                theorem WithSeminorms.toLocallyConvexSpace {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [NormedSpace ℝ π•œ] [AddCommGroup E] [Module π•œ E] [Module ℝ E] [IsScalarTower ℝ π•œ E] [TopologicalSpace E] {p : SeminormFamily π•œ E ΞΉ} (hp : WithSeminorms p) :
                @[instance 100]

                A PolynormableSpace over ℝ is locally convex.

                TODO: generalize to RCLike.

                theorem NormedSpace.toLocallyConvexSpace' (π•œ : Type u_2) {E : Type u_6} [NormedField π•œ] [NormedSpace ℝ π•œ] [SeminormedAddCommGroup E] [NormedSpace π•œ E] [Module ℝ E] [IsScalarTower ℝ π•œ E] :

                Not an instance since π•œ can't be inferred. See NormedSpace.toLocallyConvexSpace for a slightly weaker instance version.

                See NormedSpace.toLocallyConvexSpace' for a slightly stronger version which is not an instance.

                def SeminormFamily.comp {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (q : SeminormFamily π•œβ‚‚ F ΞΉ) (f : E β†’β‚›β‚—[σ₁₂] F) :
                SeminormFamily π•œ E ΞΉ

                The family of seminorms obtained by composing each seminorm by a linear map.

                Equations
                Instances For
                  theorem SeminormFamily.comp_apply {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (q : SeminormFamily π•œβ‚‚ F ΞΉ) (i : ΞΉ) (f : E β†’β‚›β‚—[σ₁₂] F) :
                  q.comp f i = (q i).comp f
                  theorem SeminormFamily.finset_sup_comp {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] (q : SeminormFamily π•œβ‚‚ F ΞΉ) (s : Finset ΞΉ) (f : E β†’β‚›β‚—[σ₁₂] F) :
                  (s.sup q).comp f = s.sup (q.comp f)
                  theorem LinearMap.withSeminorms_induced {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] [TopologicalSpace F] {q : SeminormFamily π•œβ‚‚ F ΞΉ} (hq : WithSeminorms q) (f : E β†’β‚›β‚—[σ₁₂] F) :
                  theorem Topology.IsInducing.withSeminorms {π•œ : Type u_2} {π•œβ‚‚ : Type u_3} {E : Type u_6} {F : Type u_7} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] [NormedField π•œβ‚‚] [AddCommGroup F] [Module π•œβ‚‚ F] {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂] [TopologicalSpace F] {q : SeminormFamily π•œβ‚‚ F ΞΉ} (hq : WithSeminorms q) [TopologicalSpace E] {f : E β†’β‚›β‚—[σ₁₂] F} (hf : IsInducing ⇑f) :
                  def SeminormFamily.sigma {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {ΞΊ : ΞΉ β†’ Type u_11} (p : (i : ΞΉ) β†’ SeminormFamily π•œ E (ΞΊ i)) :
                  SeminormFamily π•œ E ((i : ΞΉ) Γ— ΞΊ i)

                  (Disjoint) union of seminorm families.

                  Equations
                  Instances For
                    theorem withSeminorms_iInf {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NormedField π•œ] [AddCommGroup E] [Module π•œ E] {ΞΊ : ΞΉ β†’ Type u_11} {p : (i : ΞΉ) β†’ SeminormFamily π•œ E (ΞΊ i)} {t : ΞΉ β†’ TopologicalSpace E} (hp : βˆ€ (i : ΞΉ), WithSeminorms (p i)) :
                    theorem withSeminorms_pi {π•œ : Type u_2} {ΞΉ : Type u_9} [NormedField π•œ] {ΞΊ : ΞΉ β†’ Type u_11} {E : ΞΉ β†’ Type u_12} [(i : ΞΉ) β†’ AddCommGroup (E i)] [(i : ΞΉ) β†’ Module π•œ (E i)] [(i : ΞΉ) β†’ TopologicalSpace (E i)] {p : (i : ΞΉ) β†’ SeminormFamily π•œ (E i) (ΞΊ i)} (hp : βˆ€ (i : ΞΉ), WithSeminorms (p i)) :
                    theorem WithSeminorms.firstCountableTopology {π•œ : Type u_2} {E : Type u_6} {ΞΉ : Type u_9} [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] [Countable ΞΉ] {p : SeminormFamily π•œ E ΞΉ} [TopologicalSpace E] (hp : WithSeminorms p) :

                    If the topology of a space is induced by a countable family of seminorms, then the topology is first countable.