Monoid actions continuous in the second variable #
In this file we define class ContinuousConstSMul
. We say ContinuousConstSMul Γ T
if
Γ
acts on T
and for each γ
, the map x ↦ γ • x
is continuous. (This differs from
ContinuousSMul
, which requires simultaneous continuity in both variables.)
Main definitions #
ContinuousConstSMul Γ T
: typeclass saying that the mapx ↦ γ • x
is continuous onT
;ProperlyDiscontinuousSMul
: says that the scalar multiplication(•) : Γ → T → T
is properly discontinuous, that is, for any pair of compact setsK, L
inT
, only finitely manyγ:Γ
moveK
to have nontrivial intersection withL
.Homeomorph.smul
: scalar multiplication by an element of a groupΓ
acting onT
is a homeomorphism ofT
.
Main results #
isOpenMap_quotient_mk'_mul
: The quotient map by a group action is open.t2Space_of_properlyDiscontinuousSMul_of_t2Space
: The quotient by a discontinuous group action of a locally compact t2 space is t2.
Tags #
Hausdorff, discrete group, properly discontinuous, quotient space
Class ContinuousConstSMul Γ T
says that the scalar multiplication (•) : Γ → T → T
is continuous in the second argument. We use the same class for all kinds of multiplicative
actions, including (semi)modules and algebras.
Note that both ContinuousConstSMul α α
and ContinuousConstSMul αᵐᵒᵖ α
are
weaker versions of ContinuousMul α
.
- continuous_const_smul (γ : Γ) : Continuous fun (x : T) => γ • x
The scalar multiplication
(•) : Γ → T → T
is continuous in the second argument.
Instances
Class ContinuousConstVAdd Γ T
says that the additive action (+ᵥ) : Γ → T → T
is continuous in the second argument. We use the same class for all kinds of additive actions,
including (semi)modules and algebras.
Note that both ContinuousConstVAdd α α
and ContinuousConstVAdd αᵐᵒᵖ α
are
weaker versions of ContinuousVAdd α
.
- continuous_const_vadd (γ : Γ) : Continuous fun (x : T) => γ +ᵥ x
The additive action
(+ᵥ) : Γ → T → T
is continuous in the second argument.
Instances
If a scalar is central, then its right action is continuous when its left action is.
If an additive action is central, then its right action is continuous when its left action is.
Alias of Topology.IsInducing.continuousConstSMul
.
The homeomorphism given by scalar multiplication by a given element of a group Γ
acting on
T
is a homeomorphism from T
to itself.
Equations
- Homeomorph.smul γ = { toEquiv := MulAction.toPerm γ, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
The homeomorphism given by affine-addition by an element of an additive group Γ
acting on
T
is a homeomorphism from T
to itself.
Equations
- Homeomorph.vadd γ = { toEquiv := AddAction.toPerm γ, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
Alias of the reverse direction of smul_mem_nhds_smul_iff
.
Alias of the reverse direction of smul_mem_nhds_smul_iff
.
Alias of the reverse direction of smul_mem_nhds_smul_iff
.
Scalar multiplication by a non-zero element of a group with zero acting on α
is a
homeomorphism from α
onto itself.
Equations
- Homeomorph.smulOfNeZero c hc = Homeomorph.smul (Units.mk0 c hc)
Instances For
smul
is a closed map in the second argument.
The lemma that smul
is a closed map in the first argument (for a normed space over a complete
normed field) is isClosedMap_smul_left
in Analysis.Normed.Module.FiniteDimension
.
smul
is a closed map in the second argument.
The lemma that smul
is a closed map in the first argument (for a normed space over a complete
normed field) is isClosedMap_smul_left
in Analysis.Normed.Module.FiniteDimension
.
Class ProperlyDiscontinuousSMul Γ T
says that the scalar multiplication (•) : Γ → T → T
is properly discontinuous, that is, for any pair of compact sets K, L
in T
, only finitely many
γ:Γ
move K
to have nontrivial intersection with L
.
- finite_disjoint_inter_image {K L : Set T} : IsCompact K → IsCompact L → {γ : Γ | (fun (x : T) => γ • x) '' K ∩ L ≠ ∅}.Finite
Given two compact sets
K
andL
,γ • K ∩ L
is nonempty for finitely manyγ
.
Instances
Class ProperlyDiscontinuousVAdd Γ T
says that the additive action (+ᵥ) : Γ → T → T
is properly discontinuous, that is, for any pair of compact sets K, L
in T
, only finitely many
γ:Γ
move K
to have nontrivial intersection with L
.
- finite_disjoint_inter_image {K L : Set T} : IsCompact K → IsCompact L → {γ : Γ | (fun (x : T) => γ +ᵥ x) '' K ∩ L ≠ ∅}.Finite
Given two compact sets
K
andL
,γ +ᵥ K ∩ L
is nonempty for finitely manyγ
.
Instances
A finite group action is always properly discontinuous.
A finite group action is always properly discontinuous.
The quotient map by a group action is open, i.e. the quotient by a group action is an open quotient.
The quotient map by a group action is open, i.e. the quotient by a group action is an open quotient.
The quotient by a discontinuous group action of a locally compact t2 space is t2.
The quotient by a discontinuous group action of a locally compact t2 space is t2.
The quotient of a second countable space by a group action is second countable.
The quotient of a second countable space by an additive group action is second countable.
Scalar multiplication by a nonzero scalar preserves neighborhoods.
Alias of smul_mem_nhds_smul_iff₀
.
Scalar multiplication by a nonzero scalar preserves neighborhoods.
Alias of the reverse direction of smul_mem_nhds_smul_iff₀
.
Scalar multiplication by a nonzero scalar preserves neighborhoods.