Documentation

Mathlib.Order.Filter.AtTopBot.Defs

Definition of Filter.atTop and Filter.atBot filters #

In this file we define the filters

def Filter.atTop {α : Type u_3} [Preorder α] :

atTop is the filter representing the limit → ∞ on an ordered set. It is generated by the collection of up-sets {b | a ≤ b}. (The preorder need not have a top element for this to be well defined, and indeed is trivial when a top element exists.)

Equations
Instances For
    def Filter.atBot {α : Type u_3} [Preorder α] :

    atBot is the filter representing the limit → -∞ on an ordered set. It is generated by the collection of down-sets {b | b ≤ a}. (The preorder need not have a bottom element for this to be well defined, and indeed is trivial when a bottom element exists.)

    Equations
    Instances For
      theorem Filter.mem_atTop {α : Type u_3} [Preorder α] (a : α) :
      {b : α | a b} atTop
      theorem Filter.Ici_mem_atTop {α : Type u_3} [Preorder α] (a : α) :
      theorem Filter.Ioi_mem_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (x : α) :
      theorem Filter.mem_atBot {α : Type u_3} [Preorder α] (a : α) :
      {b : α | b a} atBot
      theorem Filter.Iic_mem_atBot {α : Type u_3} [Preorder α] (a : α) :
      theorem Filter.Iio_mem_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (x : α) :
      theorem Filter.eventually_ge_atTop {α : Type u_3} [Preorder α] (a : α) :
      ∀ᶠ (x : α) in atTop, a x
      theorem Filter.eventually_le_atBot {α : Type u_3} [Preorder α] (a : α) :
      ∀ᶠ (x : α) in atBot, x a
      theorem Filter.eventually_gt_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (a : α) :
      ∀ᶠ (x : α) in atTop, a < x
      theorem Filter.eventually_ne_atTop {α : Type u_3} [Preorder α] [NoMaxOrder α] (a : α) :
      ∀ᶠ (x : α) in atTop, x a
      theorem Filter.eventually_lt_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (a : α) :
      ∀ᶠ (x : α) in atBot, x < a
      theorem Filter.eventually_ne_atBot {α : Type u_3} [Preorder α] [NoMinOrder α] (a : α) :
      ∀ᶠ (x : α) in atBot, x a
      theorem IsTop.atTop_eq {α : Type u_3} [Preorder α] {a : α} (ha : IsTop a) :
      theorem IsBot.atBot_eq {α : Type u_3} [Preorder α] {a : α} (ha : IsBot a) :
      theorem Filter.Frequently.forall_exists_of_atTop {α : Type u_3} [Preorder α] {p : αProp} (h : ∃ᶠ (x : α) in atTop, p x) (a : α) :
      ba, p b
      theorem Filter.Frequently.forall_exists_of_atBot {α : Type u_3} [Preorder α] {p : αProp} (h : ∃ᶠ (x : α) in atBot, p x) (a : α) :
      ba, p b
      theorem Filter.atTop_eq_generate_of_forall_exists_le {α : Type u_3} [LinearOrder α] {s : Set α} (hs : ∀ (x : α), ys, x y) :
      theorem Monotone.piecewise_eventually_eq_iUnion {ι : Type u_1} {α : Type u_3} {β : αType u_6} [Preorder ι] {s : ιSet α} [(i : ι) → DecidablePred fun (x : α) => x s i] [DecidablePred fun (x : α) => x ⋃ (i : ι), s i] (hs : Monotone s) (f g : (a : α) → β a) (a : α) :
      ∀ᶠ (i : ι) in Filter.atTop, (s i).piecewise f g a = (⋃ (i : ι), s i).piecewise f g a
      theorem Antitone.piecewise_eventually_eq_iInter {ι : Type u_1} {α : Type u_3} {β : αType u_6} [Preorder ι] {s : ιSet α} [(i : ι) → DecidablePred fun (x : α) => x s i] [DecidablePred fun (x : α) => x ⋂ (i : ι), s i] (hs : Antitone s) (f g : (a : α) → β a) (a : α) :
      ∀ᶠ (i : ι) in Filter.atTop, (s i).piecewise f g a = (⋂ (i : ι), s i).piecewise f g a