Documentation

Mathlib.Order.Interval.Set.Defs

Intervals #

In any preorder α, we define intervals (which on each side can be either infinite, open, or closed) using the following naming conventions:

Each interval has the name I + letter for left side + letter for right side. For instance, Ioc a b denotes the interval (a, b].

We also define a typeclass Set.OrdConnected saying that a set includes Set.Icc a b whenever it contains both a and b.

def Set.Ioo {α : Type u_1} [Preorder α] (a : α) (b : α) :
Set α

Ioo a b is the left-open right-open interval $(a, b)$.

Equations
Instances For
    @[simp]
    theorem Set.mem_Ioo {α : Type u_1} [Preorder α] {a : α} {b : α} {x : α} :
    x Set.Ioo a b a < x x < b
    theorem Set.Ioo_def {α : Type u_1} [Preorder α] (a : α) (b : α) :
    {x : α | a < x x < b} = Set.Ioo a b
    def Set.Ico {α : Type u_1} [Preorder α] (a : α) (b : α) :
    Set α

    Ico a b is the left-closed right-open interval $[a, b)$.

    Equations
    Instances For
      @[simp]
      theorem Set.mem_Ico {α : Type u_1} [Preorder α] {a : α} {b : α} {x : α} :
      x Set.Ico a b a x x < b
      theorem Set.Ico_def {α : Type u_1} [Preorder α] (a : α) (b : α) :
      {x : α | a x x < b} = Set.Ico a b
      def Set.Iio {α : Type u_1} [Preorder α] (b : α) :
      Set α

      Iio b is the left-infinite right-open interval $(-∞, b)$.

      Equations
      Instances For
        @[simp]
        theorem Set.mem_Iio {α : Type u_1} [Preorder α] {b : α} {x : α} :
        x Set.Iio b x < b
        theorem Set.Iio_def {α : Type u_1} [Preorder α] (a : α) :
        {x : α | x < a} = Set.Iio a
        def Set.Icc {α : Type u_1} [Preorder α] (a : α) (b : α) :
        Set α

        Icc a b is the left-closed right-closed interval $[a, b]$.

        Equations
        Instances For
          @[simp]
          theorem Set.mem_Icc {α : Type u_1} [Preorder α] {a : α} {b : α} {x : α} :
          x Set.Icc a b a x x b
          theorem Set.Icc_def {α : Type u_1} [Preorder α] (a : α) (b : α) :
          {x : α | a x x b} = Set.Icc a b
          def Set.Iic {α : Type u_1} [Preorder α] (b : α) :
          Set α

          Iic b is the left-infinite right-closed interval $(-∞, b]$.

          Equations
          Instances For
            @[simp]
            theorem Set.mem_Iic {α : Type u_1} [Preorder α] {b : α} {x : α} :
            x Set.Iic b x b
            theorem Set.Iic_def {α : Type u_1} [Preorder α] (b : α) :
            {x : α | x b} = Set.Iic b
            def Set.Ioc {α : Type u_1} [Preorder α] (a : α) (b : α) :
            Set α

            Ioc a b is the left-open right-closed interval $(a, b]$.

            Equations
            Instances For
              @[simp]
              theorem Set.mem_Ioc {α : Type u_1} [Preorder α] {a : α} {b : α} {x : α} :
              x Set.Ioc a b a < x x b
              theorem Set.Ioc_def {α : Type u_1} [Preorder α] (a : α) (b : α) :
              {x : α | a < x x b} = Set.Ioc a b
              def Set.Ici {α : Type u_1} [Preorder α] (a : α) :
              Set α

              Ici a is the left-closed right-infinite interval $[a, ∞)$.

              Equations
              Instances For
                @[simp]
                theorem Set.mem_Ici {α : Type u_1} [Preorder α] {a : α} {x : α} :
                x Set.Ici a a x
                theorem Set.Ici_def {α : Type u_1} [Preorder α] (a : α) :
                {x : α | a x} = Set.Ici a
                def Set.Ioi {α : Type u_1} [Preorder α] (a : α) :
                Set α

                Ioi a is the left-open right-infinite interval $(a, ∞)$.

                Equations
                Instances For
                  @[simp]
                  theorem Set.mem_Ioi {α : Type u_1} [Preorder α] {a : α} {x : α} :
                  x Set.Ioi a a < x
                  theorem Set.Ioi_def {α : Type u_1} [Preorder α] (a : α) :
                  {x : α | a < x} = Set.Ioi a
                  class Set.OrdConnected {α : Type u_1} [Preorder α] (s : Set α) :

                  We say that a set s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]]. If α is a DenselyOrdered ConditionallyCompleteLinearOrder with the OrderTopology, then this condition is equivalent to IsPreconnected s. If α is a LinearOrderedField, then this condition is also equivalent to Convex α s.

                  • out' : ∀ ⦃x : α⦄, x s∀ ⦃y : α⦄, y sSet.Icc x y s

                    s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]].

                  Instances
                    theorem Set.OrdConnected.out' {α : Type u_1} :
                    ∀ {inst : Preorder α} {s : Set α} [self : s.OrdConnected] ⦃x : α⦄, x s∀ ⦃y : α⦄, y sSet.Icc x y s

                    s : Set α is OrdConnected if for all x y ∈ s it includes the interval [[x, y]].