Documentation

Mathlib.Order.Defs.PartialOrder

Orders #

Defines classes for preorders and partial orders and proves some basic lemmas about them.

Definition of Preorder and lemmas about types with a Preorder #

class Preorder (α : Type u_2) extends LE α, LT α :
Type u_2

A preorder is a reflexive, transitive relation with a < b defined in the obvious way.

Instances
    @[simp]
    theorem le_refl {α : Type u_1} [Preorder α] (a : α) :
    a a

    The relation on a preorder is reflexive.

    theorem le_rfl {α : Type u_1} [Preorder α] {a : α} :
    a a

    A version of le_refl where the argument is implicit

    theorem le_trans {α : Type u_1} [Preorder α] {a b c : α} :
    a bb ca c

    The relation on a preorder is transitive.

    theorem lt_iff_le_not_le {α : Type u_1} [Preorder α] {a b : α} :
    a < b a b ¬b a
    theorem lt_of_le_not_le {α : Type u_1} [Preorder α] {a b : α} (hab : a b) (hba : ¬b a) :
    a < b
    @[deprecated "No deprecation message was provided." (since := "2024-07-30")]
    theorem le_not_le_of_lt {α : Type u_1} [Preorder α] {a b : α} :
    a < ba b ¬b a
    theorem le_of_eq {α : Type u_1} [Preorder α] {a b : α} (hab : a = b) :
    a b
    theorem le_of_lt {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
    a b
    theorem not_le_of_lt {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
    ¬b a
    theorem not_le_of_gt {α : Type u_1} [Preorder α] {a b : α} (hab : a > b) :
    ¬a b
    theorem not_lt_of_le {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
    ¬b < a
    theorem not_lt_of_ge {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
    ¬a < b
    theorem LT.lt.not_le {α : Type u_1} [Preorder α] {a b : α} (hab : a < b) :
    ¬b a

    Alias of not_le_of_lt.

    theorem LE.le.not_lt {α : Type u_1} [Preorder α] {a b : α} (hab : a b) :
    ¬b < a

    Alias of not_lt_of_le.

    theorem ge_trans {α : Type u_1} [Preorder α] {a b c : α} :
    a bb ca c
    theorem lt_irrefl {α : Type u_1} [Preorder α] (a : α) :
    ¬a < a
    theorem gt_irrefl {α : Type u_1} [Preorder α] (a : α) :
    ¬a > a
    theorem lt_of_lt_of_le {α : Type u_1} [Preorder α] {a b c : α} (hab : a < b) (hbc : b c) :
    a < c
    theorem lt_of_le_of_lt {α : Type u_1} [Preorder α] {a b c : α} (hab : a b) (hbc : b < c) :
    a < c
    theorem gt_of_gt_of_ge {α : Type u_1} [Preorder α] {a b c : α} (h₁ : a > b) (h₂ : b c) :
    a > c
    theorem gt_of_ge_of_gt {α : Type u_1} [Preorder α] {a b c : α} (h₁ : a b) (h₂ : b > c) :
    a > c
    theorem lt_trans {α : Type u_1} [Preorder α] {a b c : α} (hab : a < b) (hbc : b < c) :
    a < c
    theorem gt_trans {α : Type u_1} [Preorder α] {a b c : α} :
    a > bb > ca > c
    theorem ne_of_lt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
    a b
    theorem ne_of_gt {α : Type u_1} [Preorder α] {a b : α} (h : b < a) :
    a b
    theorem lt_asymm {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
    ¬b < a
    theorem not_lt_of_gt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
    ¬b < a

    Alias of lt_asymm.

    theorem not_lt_of_lt {α : Type u_1} [Preorder α] {a b : α} (h : a < b) :
    ¬b < a

    Alias of lt_asymm.

    theorem le_of_lt_or_eq {α : Type u_1} [Preorder α] {a b : α} (h : a < b a = b) :
    a b
    theorem le_of_eq_or_lt {α : Type u_1} [Preorder α] {a b : α} (h : a = b a < b) :
    a b
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    @[instance 900]
    Equations
    def decidableLTOfDecidableLE {α : Type u_1} [Preorder α] [DecidableRel fun (x1 x2 : α) => x1 x2] :
    DecidableRel fun (x1 x2 : α) => x1 < x2

    < is decidable if is.

    Equations
    Instances For

      Definition of PartialOrder and lemmas about types with a partial order #

      class PartialOrder (α : Type u_2) extends Preorder α :
      Type u_2

      A partial order is a reflexive, transitive, antisymmetric relation .

      Instances
        theorem le_antisymm {α : Type u_1} [PartialOrder α] {a b : α} :
        a bb aa = b
        theorem eq_of_le_of_le {α : Type u_1} [PartialOrder α] {a b : α} :
        a bb aa = b

        Alias of le_antisymm.

        theorem le_antisymm_iff {α : Type u_1} [PartialOrder α] {a b : α} :
        a = b a b b a
        theorem lt_of_le_of_ne {α : Type u_1} [PartialOrder α] {a b : α} :
        a ba ba < b
        def decidableEqOfDecidableLE {α : Type u_1} [PartialOrder α] [DecidableRel fun (x1 x2 : α) => x1 x2] :

        Equality is decidable if is.

        Equations
        Instances For
          theorem Decidable.lt_or_eq_of_le {α : Type u_1} [PartialOrder α] {a b : α} [DecidableRel fun (x1 x2 : α) => x1 x2] (hab : a b) :
          a < b a = b
          theorem Decidable.eq_or_lt_of_le {α : Type u_1} [PartialOrder α] {a b : α} [DecidableRel fun (x1 x2 : α) => x1 x2] (hab : a b) :
          a = b a < b
          theorem Decidable.le_iff_lt_or_eq {α : Type u_1} [PartialOrder α] {a b : α} [DecidableRel fun (x1 x2 : α) => x1 x2] :
          a b a < b a = b
          theorem lt_or_eq_of_le {α : Type u_1} [PartialOrder α] {a b : α} :
          a ba < b a = b
          theorem le_iff_lt_or_eq {α : Type u_1} [PartialOrder α] {a b : α} :
          a b a < b a = b