Continuous monoid action #
In this file we define class ContinuousSMul
. We say ContinuousSMul M X
if M
acts on X
and
the map (c, x) ↦ c • x
is continuous on M × X
. We reuse this class for topological
(semi)modules, vector spaces and algebras.
Main definitions #
ContinuousSMul M X
: typeclass saying that the map(c, x) ↦ c • x
is continuous onM × X
;Units.continuousSMul
: scalar multiplication byMˣ
is continuous when scalar multiplication byM
is continuous. This allowsHomeomorph.smul
to be used with on monoids withG = Mˣ
.
-- Porting note: These have all moved
Homeomorph.smul_of_ne_zero
: if a group with zeroG₀
(e.g., a field) acts onX
andc : G₀
is a nonzero element ofG₀
, then scalar multiplication byc
is a homeomorphism ofX
;Homeomorph.smul
: scalar multiplication by an element of a groupG
acting onX
is a homeomorphism ofX
.
Main results #
Besides homeomorphisms mentioned above, in this file we provide lemmas like Continuous.smul
or Filter.Tendsto.smul
that provide dot-syntax access to ContinuousSMul
.
Class ContinuousSMul M X
says that the scalar multiplication (•) : M → X → X
is continuous in both arguments. We use the same class for all kinds of multiplicative actions,
including (semi)modules and algebras.
- continuous_smul : Continuous fun (p : M × X) => p.1 • p.2
The scalar multiplication
(•)
is continuous.
Instances
Class ContinuousVAdd M X
says that the additive action (+ᵥ) : M → X → X
is continuous in both arguments. We use the same class for all kinds of additive actions,
including (semi)modules and algebras.
- continuous_vadd : Continuous fun (p : M × X) => p.1 +ᵥ p.2
The additive action
(+ᵥ)
is continuous.
Instances
If a scalar action is central, then its right action is continuous when its left action is.
If an additive action is central, then its right action is continuous when its left action is.
Suppose that N
acts on X
and M
continuously acts on Y
.
Suppose that g : Y → X
is an action homomorphism in the following sense:
there exists a continuous function f : N → M
such that g (c • x) = f c • g x
.
Then the action of N
on X
is continuous as well.
In many cases, f = id
so that g
is an action homomorphism in the sense of MulActionHom
.
However, this version also works for semilinear maps and f = Units.val
.
Suppose that N
additively acts on X
and M
continuously additively acts on Y
.
Suppose that g : Y → X
is an additive action homomorphism in the following sense:
there exists a continuous function f : N → M
such that g (c +ᵥ x) = f c +ᵥ g x
.
Then the action of N
on X
is continuous as well.
In many cases, f = id
so that g
is an action homomorphism in the sense of AddActionHom
.
However, this version also works for f = AddUnits.val
.
Alias of Topology.IsInducing.continuousSMul
.
Suppose that N
acts on X
and M
continuously acts on Y
.
Suppose that g : Y → X
is an action homomorphism in the following sense:
there exists a continuous function f : N → M
such that g (c • x) = f c • g x
.
Then the action of N
on X
is continuous as well.
In many cases, f = id
so that g
is an action homomorphism in the sense of MulActionHom
.
However, this version also works for semilinear maps and f = Units.val
.
If an action is continuous, then composing this action with a continuous homomorphism gives again a continuous action.
The stabilizer of a continuous group action on a discrete space is an open subgroup.
An AddTorsor
for a connected space is a connected space. This is not an instance because
it loops for a group as a torsor over itself.