analysis.normed_space.quaternion_exponential
⟷
Mathlib.Analysis.NormedSpace.QuaternionExponential
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -81,7 +81,7 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
ext n : 1
let k : ℝ := ↑(2 * n + 1)!
calc
- k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-norm_sq q) ^ n * q) := by rw [pow_succ', pow_mul, hq2]
+ k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-norm_sq q) ^ n * q) := by rw [pow_succ, pow_mul, hq2]
_ = k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q := _
_ = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := _
· congr 1
@@ -89,7 +89,7 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
push_cast
· rw [smul_smul]
congr 1
- simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
+ simp_rw [pow_succ, mul_div_assoc, div_div_cancel_left' hqn]
ring
#align quaternion.has_sum_exp_series_of_imaginary Quaternion.hasSum_expSeries_of_imaginary
-/
@@ -149,7 +149,7 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (NormedSpace.exp ℝ q) = NormedSpace
· simp [hv]
rw [norm_sq_add, norm_sq_smul, star_smul, coe_mul_eq_smul, smul_re, smul_re, star_re, im_re,
smul_zero, smul_zero, MulZeroClass.mul_zero, add_zero, div_pow, norm_sq_coe,
- norm_sq_eq_norm_sq, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
+ norm_sq_eq_norm_sq, ← sq, div_mul_cancel₀ _ (pow_ne_zero _ hv)]
_ = NormedSpace.exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
#align quaternion.norm_sq_exp Quaternion.normSq_exp
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -51,7 +51,7 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
replace hs := (hs.div_const ‖q‖).smul_const q
obtain rfl | hq0 := eq_or_ne q 0
· simp_rw [NormedSpace.expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]
- simp_rw [norm_zero] at hc
+ simp_rw [norm_zero] at hc
convert hc
ext (_ | n) : 1
·
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -34,8 +34,8 @@ namespace Quaternion
#print Quaternion.exp_coe /-
@[simp, norm_cast]
-theorem exp_coe (r : ℝ) : exp ℝ (r : ℍ[ℝ]) = ↑(exp ℝ r) :=
- (map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
+theorem exp_coe (r : ℝ) : NormedSpace.exp ℝ (r : ℍ[ℝ]) = ↑(NormedSpace.exp ℝ r) :=
+ (NormedSpace.map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
#align quaternion.exp_coe Quaternion.exp_coe
-/
@@ -45,12 +45,12 @@ at `‖q‖` tend to `c` and `s`, then the exponential series tends to `c + (s /
theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s : ℝ}
(hc : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n) / (2 * n)!) c)
(hs : HasSum (fun n => (-1) ^ n * ‖q‖ ^ (2 * n + 1) / (2 * n + 1)!) s) :
- HasSum (fun n => expSeries ℝ _ n fun _ => q) (↑c + (s / ‖q‖) • q) :=
+ HasSum (fun n => NormedSpace.expSeries ℝ _ n fun _ => q) (↑c + (s / ‖q‖) • q) :=
by
replace hc := has_sum_coe.mpr hc
replace hs := (hs.div_const ‖q‖).smul_const q
obtain rfl | hq0 := eq_or_ne q 0
- · simp_rw [expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]
+ · simp_rw [NormedSpace.expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]
simp_rw [norm_zero] at hc
convert hc
ext (_ | n) : 1
@@ -60,7 +60,7 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
·
rw [zero_pow (mul_pos two_pos (Nat.succ_pos _)), MulZeroClass.mul_zero, zero_div,
Pi.single_eq_of_ne n.succ_ne_zero, coe_zero]
- simp_rw [expSeries_apply_eq]
+ simp_rw [NormedSpace.expSeries_apply_eq]
have hq2 : q ^ 2 = -norm_sq q := sq_eq_neg_norm_sq.mpr hq
have hqn := norm_ne_zero_iff.mpr hq0
refine' HasSum.even_add_odd _ _
@@ -97,11 +97,11 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
#print Quaternion.exp_of_re_eq_zero /-
/-- The closed form for the quaternion exponential on imaginary quaternions. -/
theorem exp_of_re_eq_zero (q : Quaternion ℝ) (hq : q.re = 0) :
- exp ℝ q = ↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q :=
+ NormedSpace.exp ℝ q = ↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q :=
by
- rw [exp_eq_tsum]
+ rw [NormedSpace.exp_eq_tsum]
refine' HasSum.tsum_eq _
- simp_rw [← expSeries_apply_eq]
+ simp_rw [← NormedSpace.expSeries_apply_eq]
exact has_sum_exp_series_of_imaginary hq (Real.hasSum_cos _) (Real.hasSum_sin _)
#align quaternion.exp_of_re_eq_zero Quaternion.exp_of_re_eq_zero
-/
@@ -109,34 +109,40 @@ theorem exp_of_re_eq_zero (q : Quaternion ℝ) (hq : q.re = 0) :
#print Quaternion.exp_eq /-
/-- The closed form for the quaternion exponential on arbitrary quaternions. -/
theorem exp_eq (q : Quaternion ℝ) :
- exp ℝ q = exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im) :=
+ NormedSpace.exp ℝ q =
+ NormedSpace.exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im) :=
by
- rw [← exp_of_re_eq_zero q.im q.im_re, ← coe_mul_eq_smul, ← exp_coe, ← exp_add_of_commute,
- re_add_im]
+ rw [← exp_of_re_eq_zero q.im q.im_re, ← coe_mul_eq_smul, ← exp_coe, ←
+ NormedSpace.exp_add_of_commute, re_add_im]
exact Algebra.commutes q.re (_ : ℍ[ℝ])
#align quaternion.exp_eq Quaternion.exp_eq
-/
#print Quaternion.re_exp /-
-theorem re_exp (q : ℍ[ℝ]) : (exp ℝ q).re = exp ℝ q.re * Real.cos ‖q - q.re‖ := by simp [exp_eq]
+theorem re_exp (q : ℍ[ℝ]) :
+ (NormedSpace.exp ℝ q).re = NormedSpace.exp ℝ q.re * Real.cos ‖q - q.re‖ := by simp [exp_eq]
#align quaternion.re_exp Quaternion.re_exp
-/
#print Quaternion.im_exp /-
-theorem im_exp (q : ℍ[ℝ]) : (exp ℝ q).im = (exp ℝ q.re * (Real.sin ‖q.im‖ / ‖q.im‖)) • q.im := by
+theorem im_exp (q : ℍ[ℝ]) :
+ (NormedSpace.exp ℝ q).im = (NormedSpace.exp ℝ q.re * (Real.sin ‖q.im‖ / ‖q.im‖)) • q.im := by
simp [exp_eq, smul_smul]
#align quaternion.im_exp Quaternion.im_exp
-/
#print Quaternion.normSq_exp /-
-theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
+theorem normSq_exp (q : ℍ[ℝ]) : normSq (NormedSpace.exp ℝ q) = NormedSpace.exp ℝ q.re ^ 2 :=
calc
- normSq (exp ℝ q) =
- normSq (exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im)) :=
+ normSq (NormedSpace.exp ℝ q) =
+ normSq
+ (NormedSpace.exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im)) :=
by rw [exp_eq]
- _ = exp ℝ q.re ^ 2 * normSq (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im) := by
- rw [norm_sq_smul]
- _ = exp ℝ q.re ^ 2 * (Real.cos ‖q.im‖ ^ 2 + Real.sin ‖q.im‖ ^ 2) :=
+ _ =
+ NormedSpace.exp ℝ q.re ^ 2 *
+ normSq (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im) :=
+ by rw [norm_sq_smul]
+ _ = NormedSpace.exp ℝ q.re ^ 2 * (Real.cos ‖q.im‖ ^ 2 + Real.sin ‖q.im‖ ^ 2) :=
by
congr 1
obtain hv | hv := eq_or_ne ‖q.im‖ 0
@@ -144,7 +150,7 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
rw [norm_sq_add, norm_sq_smul, star_smul, coe_mul_eq_smul, smul_re, smul_re, star_re, im_re,
smul_zero, smul_zero, MulZeroClass.mul_zero, add_zero, div_pow, norm_sq_coe,
norm_sq_eq_norm_sq, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
- _ = exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
+ _ = NormedSpace.exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
#align quaternion.norm_sq_exp Quaternion.normSq_exp
-/
@@ -152,8 +158,8 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
/-- Note that this implies that exponentials of pure imaginary quaternions are unit quaternions
since in that case the RHS is `1` via `exp_zero` and `norm_one`. -/
@[simp]
-theorem norm_exp (q : ℍ[ℝ]) : ‖exp ℝ q‖ = ‖exp ℝ q.re‖ := by
- rw [norm_eq_sqrt_real_inner (exp ℝ q), inner_self, norm_sq_exp, Real.sqrt_sq_eq_abs,
+theorem norm_exp (q : ℍ[ℝ]) : ‖NormedSpace.exp ℝ q‖ = ‖NormedSpace.exp ℝ q.re‖ := by
+ rw [norm_eq_sqrt_real_inner (NormedSpace.exp ℝ q), inner_self, norm_sq_exp, Real.sqrt_sq_eq_abs,
Real.norm_eq_abs]
#align quaternion.norm_exp Quaternion.norm_exp
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
-import Mathbin.Analysis.Quaternion
-import Mathbin.Analysis.NormedSpace.Exponential
-import Mathbin.Analysis.SpecialFunctions.Trigonometric.Series
+import Analysis.Quaternion
+import Analysis.NormedSpace.Exponential
+import Analysis.SpecialFunctions.Trigonometric.Series
#align_import analysis.normed_space.quaternion_exponential from "leanprover-community/mathlib"@"7e5137f579de09a059a5ce98f364a04e221aabf0"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-
-! This file was ported from Lean 3 source module analysis.normed_space.quaternion_exponential
-! leanprover-community/mathlib commit 7e5137f579de09a059a5ce98f364a04e221aabf0
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.Quaternion
import Mathbin.Analysis.NormedSpace.Exponential
import Mathbin.Analysis.SpecialFunctions.Trigonometric.Series
+#align_import analysis.normed_space.quaternion_exponential from "leanprover-community/mathlib"@"7e5137f579de09a059a5ce98f364a04e221aabf0"
+
/-!
# Lemmas about `exp` on `quaternion`s
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -35,11 +35,14 @@ open scoped Quaternion Nat
namespace Quaternion
+#print Quaternion.exp_coe /-
@[simp, norm_cast]
theorem exp_coe (r : ℝ) : exp ℝ (r : ℍ[ℝ]) = ↑(exp ℝ r) :=
(map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
#align quaternion.exp_coe Quaternion.exp_coe
+-/
+#print Quaternion.hasSum_expSeries_of_imaginary /-
/-- Auxiliary result; if the power series corresponding to `real.cos` and `real.sin` evaluated
at `‖q‖` tend to `c` and `s`, then the exponential series tends to `c + (s / ‖q‖)`. -/
theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s : ℝ}
@@ -92,7 +95,9 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
ring
#align quaternion.has_sum_exp_series_of_imaginary Quaternion.hasSum_expSeries_of_imaginary
+-/
+#print Quaternion.exp_of_re_eq_zero /-
/-- The closed form for the quaternion exponential on imaginary quaternions. -/
theorem exp_of_re_eq_zero (q : Quaternion ℝ) (hq : q.re = 0) :
exp ℝ q = ↑(Real.cos ‖q‖) + (Real.sin ‖q‖ / ‖q‖) • q :=
@@ -102,7 +107,9 @@ theorem exp_of_re_eq_zero (q : Quaternion ℝ) (hq : q.re = 0) :
simp_rw [← expSeries_apply_eq]
exact has_sum_exp_series_of_imaginary hq (Real.hasSum_cos _) (Real.hasSum_sin _)
#align quaternion.exp_of_re_eq_zero Quaternion.exp_of_re_eq_zero
+-/
+#print Quaternion.exp_eq /-
/-- The closed form for the quaternion exponential on arbitrary quaternions. -/
theorem exp_eq (q : Quaternion ℝ) :
exp ℝ q = exp ℝ q.re • (↑(Real.cos ‖q.im‖) + (Real.sin ‖q.im‖ / ‖q.im‖) • q.im) :=
@@ -111,14 +118,20 @@ theorem exp_eq (q : Quaternion ℝ) :
re_add_im]
exact Algebra.commutes q.re (_ : ℍ[ℝ])
#align quaternion.exp_eq Quaternion.exp_eq
+-/
+#print Quaternion.re_exp /-
theorem re_exp (q : ℍ[ℝ]) : (exp ℝ q).re = exp ℝ q.re * Real.cos ‖q - q.re‖ := by simp [exp_eq]
#align quaternion.re_exp Quaternion.re_exp
+-/
+#print Quaternion.im_exp /-
theorem im_exp (q : ℍ[ℝ]) : (exp ℝ q).im = (exp ℝ q.re * (Real.sin ‖q.im‖ / ‖q.im‖)) • q.im := by
simp [exp_eq, smul_smul]
#align quaternion.im_exp Quaternion.im_exp
+-/
+#print Quaternion.normSq_exp /-
theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
calc
normSq (exp ℝ q) =
@@ -136,7 +149,9 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
norm_sq_eq_norm_sq, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
_ = exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
#align quaternion.norm_sq_exp Quaternion.normSq_exp
+-/
+#print Quaternion.norm_exp /-
/-- Note that this implies that exponentials of pure imaginary quaternions are unit quaternions
since in that case the RHS is `1` via `exp_zero` and `norm_one`. -/
@[simp]
@@ -144,6 +159,7 @@ theorem norm_exp (q : ℍ[ℝ]) : ‖exp ℝ q‖ = ‖exp ℝ q.re‖ := by
rw [norm_eq_sqrt_real_inner (exp ℝ q), inner_self, norm_sq_exp, Real.sqrt_sq_eq_abs,
Real.norm_eq_abs]
#align quaternion.norm_exp Quaternion.norm_exp
+-/
end Quaternion
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -71,7 +71,6 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
k⁻¹ • q ^ (2 * n) = k⁻¹ • (-norm_sq q) ^ n := by rw [pow_mul, hq2]
_ = k⁻¹ • ↑((-1) ^ n * ‖q‖ ^ (2 * n)) := _
_ = ↑((-1) ^ n * ‖q‖ ^ (2 * n) / k) := _
-
· congr 1
rw [neg_pow, norm_sq_eq_norm_sq, pow_mul, sq]
push_cast
@@ -85,7 +84,6 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-norm_sq q) ^ n * q) := by rw [pow_succ', pow_mul, hq2]
_ = k⁻¹ • ((-1) ^ n * ‖q‖ ^ (2 * n)) • q := _
_ = ((-1) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := _
-
· congr 1
rw [neg_pow, norm_sq_eq_norm_sq, pow_mul, sq, ← coe_mul_eq_smul]
push_cast
@@ -137,7 +135,6 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
smul_zero, smul_zero, MulZeroClass.mul_zero, add_zero, div_pow, norm_sq_coe,
norm_sq_eq_norm_sq, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
_ = exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
-
#align quaternion.norm_sq_exp Quaternion.normSq_exp
/-- Note that this implies that exponentials of pure imaginary quaternions are unit quaternions
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
! This file was ported from Lean 3 source module analysis.normed_space.quaternion_exponential
-! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9
+! leanprover-community/mathlib commit 7e5137f579de09a059a5ce98f364a04e221aabf0
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.SpecialFunctions.Trigonometric.Series
/-!
# Lemmas about `exp` on `quaternion`s
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file contains results about `exp` on `quaternion ℝ`.
## Main results
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -48,7 +48,7 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
replace hs := (hs.div_const ‖q‖).smul_const q
obtain rfl | hq0 := eq_or_ne q 0
· simp_rw [expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]
- simp_rw [norm_zero] at hc
+ simp_rw [norm_zero] at hc
convert hc
ext (_ | n) : 1
·
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -28,7 +28,7 @@ This file contains results about `exp` on `quaternion ℝ`.
-/
-open Quaternion Nat
+open scoped Quaternion Nat
namespace Quaternion
mathlib commit https://github.com/leanprover-community/mathlib/commit/738054fa93d43512da144ec45ce799d18fd44248
@@ -4,13 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
! This file was ported from Lean 3 source module analysis.normed_space.quaternion_exponential
-! leanprover-community/mathlib commit cf7a7252c1989efe5800e0b3cdfeb4228ac6b40e
+! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathbin.Analysis.Quaternion
import Mathbin.Analysis.NormedSpace.Exponential
-import Mathbin.Analysis.InnerProductSpace.PiL2
import Mathbin.Analysis.SpecialFunctions.Trigonometric.Series
/-!
mathlib commit https://github.com/leanprover-community/mathlib/commit/86d04064ca33ee3d3405fbfc497d494fd2dd4796
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
! This file was ported from Lean 3 source module analysis.normed_space.quaternion_exponential
-! leanprover-community/mathlib commit da3fc4a33ff6bc75f077f691dc94c217b8d41559
+! leanprover-community/mathlib commit cf7a7252c1989efe5800e0b3cdfeb4228ac6b40e
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -33,10 +33,6 @@ open Quaternion Nat
namespace Quaternion
-theorem conj_exp (q : ℍ[ℝ]) : conj (exp ℝ q) = exp ℝ (conj q) :=
- star_exp q
-#align quaternion.conj_exp Quaternion.conj_exp
-
@[simp, norm_cast]
theorem exp_coe (r : ℝ) : exp ℝ (r : ℍ[ℝ]) = ↑(exp ℝ r) :=
(map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
@@ -135,7 +131,7 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
congr 1
obtain hv | hv := eq_or_ne ‖q.im‖ 0
· simp [hv]
- rw [norm_sq_add, norm_sq_smul, conj_smul, coe_mul_eq_smul, smul_re, smul_re, conj_re, im_re,
+ rw [norm_sq_add, norm_sq_smul, star_smul, coe_mul_eq_smul, smul_re, smul_re, star_re, im_re,
smul_zero, smul_zero, MulZeroClass.mul_zero, add_zero, div_pow, norm_sq_coe,
norm_sq_eq_norm_sq, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
_ = exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
mathlib commit https://github.com/leanprover-community/mathlib/commit/da3fc4a33ff6bc75f077f691dc94c217b8d41559
@@ -10,9 +10,9 @@ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Series
#align_import analysis.normed_space.quaternion_exponential from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
/-!
-# Lemmas about `exp` on `Quaternion`s
+# Lemmas about `NormedSpace.exp` on `Quaternion`s
-This file contains results about `exp` on `Quaternion ℝ`.
+This file contains results about `NormedSpace.exp` on `Quaternion ℝ`.
## Main results
@@ -137,7 +137,7 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
#align quaternion.norm_sq_exp Quaternion.normSq_exp
/-- Note that this implies that exponentials of pure imaginary quaternions are unit quaternions
-since in that case the RHS is `1` via `exp_zero` and `norm_one`. -/
+since in that case the RHS is `1` via `NormedSpace.exp_zero` and `norm_one`. -/
@[simp]
theorem norm_exp (q : ℍ[ℝ]) : ‖exp ℝ q‖ = ‖exp ℝ q.re‖ := by
rw [norm_eq_sqrt_real_inner (exp ℝ q), inner_self, normSq_exp, Real.sqrt_sq_eq_abs,
We change the following field in the definition of an additive commutative monoid:
nsmul_succ : ∀ (n : ℕ) (x : G),
- AddMonoid.nsmul (n + 1) x = x + AddMonoid.nsmul n x
+ AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
where the latter is more natural
We adjust the definitions of ^
in monoids, groups, etc.
Originally there was a warning comment about why this natural order was preferred
use
x * npowRec n x
and notnpowRec n x * x
in the definition to make sure that definitional unfolding ofnpowRec
is blocked, to avoid deep recursion issues.
but it seems to no longer apply.
Remarks on the PR :
pow_succ
and pow_succ'
have switched their meanings.Ideal.IsPrime.mul_mem_pow
which is defined in [Mathlib/RingTheory/DedekindDomain/Ideal.lean]. Changing the order of operation forced me to add the symmetric lemma Ideal.IsPrime.mem_pow_mul
.@@ -66,7 +66,7 @@ theorem expSeries_odd_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) (n : ℕ
have hqn := norm_ne_zero_iff.mpr hq0
let k : ℝ := ↑(2 * n + 1)!
calc
- k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) := by rw [pow_succ', pow_mul, hq2]
+ k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) := by rw [pow_succ, pow_mul, hq2]
_ = k⁻¹ • ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) • q := ?_
_ = ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := ?_
· congr 1
@@ -74,7 +74,7 @@ theorem expSeries_odd_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) (n : ℕ
norm_cast
· rw [smul_smul]
congr 1
- simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
+ simp_rw [pow_succ, mul_div_assoc, div_div_cancel_left' hqn]
ring
/-- Auxiliary result; if the power series corresponding to `Real.cos` and `Real.sin` evaluated
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -131,7 +131,7 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
· simp [hv]
rw [normSq_add, normSq_smul, star_smul, coe_mul_eq_smul, smul_re, smul_re, star_re, im_re,
smul_zero, smul_zero, mul_zero, add_zero, div_pow, normSq_coe,
- normSq_eq_norm_mul_self, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
+ normSq_eq_norm_mul_self, ← sq, div_mul_cancel₀ _ (pow_ne_zero _ hv)]
_ = exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
#align quaternion.norm_sq_exp Quaternion.normSq_exp
Besides being split in three, this proof is largely untouched.
@@ -35,6 +35,48 @@ theorem exp_coe (r : ℝ) : exp ℝ (r : ℍ[ℝ]) = ↑(exp ℝ r) :=
(map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
#align quaternion.exp_coe Quaternion.exp_coe
+/-- The even terms of `expSeries` are real, and correspond to the series for $\cos ‖q‖$. -/
+theorem expSeries_even_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) (n : ℕ) :
+ expSeries ℝ (Quaternion ℝ) (2 * n) (fun _ => q) =
+ ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n) / (2 * n)!) := by
+ rw [expSeries_apply_eq]
+ have hq2 : q ^ 2 = -normSq q := sq_eq_neg_normSq.mpr hq
+ letI k : ℝ := ↑(2 * n)!
+ calc
+ k⁻¹ • q ^ (2 * n) = k⁻¹ • (-normSq q) ^ n := by rw [pow_mul, hq2]
+ _ = k⁻¹ • ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) := ?_
+ _ = ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n) / k) := ?_
+ · congr 1
+ rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq]
+ push_cast
+ rfl
+ · rw [← coe_mul_eq_smul, div_eq_mul_inv]
+ norm_cast
+ ring_nf
+
+/-- The odd terms of `expSeries` are real, and correspond to the series for
+$\frac{q}{‖q‖} \sin ‖q‖$. -/
+theorem expSeries_odd_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) (n : ℕ) :
+ expSeries ℝ (Quaternion ℝ) (2 * n + 1) (fun _ => q) =
+ (((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / (2 * n + 1)!) / ‖q‖) • q := by
+ rw [expSeries_apply_eq]
+ obtain rfl | hq0 := eq_or_ne q 0
+ · simp
+ have hq2 : q ^ 2 = -normSq q := sq_eq_neg_normSq.mpr hq
+ have hqn := norm_ne_zero_iff.mpr hq0
+ let k : ℝ := ↑(2 * n + 1)!
+ calc
+ k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) := by rw [pow_succ', pow_mul, hq2]
+ _ = k⁻¹ • ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) • q := ?_
+ _ = ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := ?_
+ · congr 1
+ rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq, ← coe_mul_eq_smul]
+ norm_cast
+ · rw [smul_smul]
+ congr 1
+ simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
+ ring
+
/-- Auxiliary result; if the power series corresponding to `Real.cos` and `Real.sin` evaluated
at `‖q‖` tend to `c` and `s`, then the exponential series tends to `c + (s / ‖q‖)`. -/
theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s : ℝ}
@@ -43,48 +85,13 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
HasSum (fun n => expSeries ℝ (Quaternion ℝ) n fun _ => q) (↑c + (s / ‖q‖) • q) := by
replace hc := hasSum_coe.mpr hc
replace hs := (hs.div_const ‖q‖).smul_const q
- obtain rfl | hq0 := eq_or_ne q 0
- · simp_rw [expSeries_apply_zero, norm_zero, div_zero, zero_smul, add_zero]
- simp_rw [norm_zero] at hc
- convert hc using 1
- ext (_ | n) : 1
- · rw [pow_zero, Nat.zero_eq, mul_zero, pow_zero, Nat.factorial_zero, Nat.cast_one,
- div_one, one_mul, Pi.single_eq_same, coe_one]
- · rw [zero_pow (mul_pos two_pos (Nat.succ_pos _)), mul_zero, zero_div,
- Pi.single_eq_of_ne n.succ_ne_zero, coe_zero]
- simp_rw [expSeries_apply_eq]
- have hq2 : q ^ 2 = -normSq q := sq_eq_neg_normSq.mpr hq
- have hqn := norm_ne_zero_iff.mpr hq0
- refine' HasSum.even_add_odd _ _
+ refine HasSum.even_add_odd ?_ ?_
· convert hc using 1
ext n : 1
- letI k : ℝ := ↑(2 * n)!
- calc
- k⁻¹ • q ^ (2 * n) = k⁻¹ • (-normSq q) ^ n := by rw [pow_mul, hq2]
- _ = k⁻¹ • ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) := ?_
- _ = ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n) / k) := ?_
- · congr 1
- rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq]
- push_cast
- rfl
- · rw [← coe_mul_eq_smul, div_eq_mul_inv]
- norm_cast
- ring_nf
+ rw [expSeries_even_of_imaginary hq]
· convert hs using 1
ext n : 1
- let k : ℝ := ↑(2 * n + 1)!
- calc
- k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) := by
- rw [pow_succ', pow_mul, hq2]
- _ = k⁻¹ • ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) • q := ?_
- _ = ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := ?_
- · congr 1
- rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq, ← coe_mul_eq_smul]
- norm_cast
- · rw [smul_smul]
- congr 1
- simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
- ring
+ rw [expSeries_odd_of_imaginary hq]
#align quaternion.has_sum_exp_series_of_imaginary Quaternion.hasSum_expSeries_of_imaginary
/-- The closed form for the quaternion exponential on imaginary quaternions. -/
@@ -24,9 +24,10 @@ This file contains results about `exp` on `Quaternion ℝ`.
-/
-
open scoped Quaternion Nat
+open NormedSpace
+
namespace Quaternion
@[simp, norm_cast]
This is the supremum of
along with some minor fixes from failures on nightly-testing as Mathlib master
is merged into it.
Note that some PRs for changes that are already compatible with the current toolchain and will be necessary have already been split out: #8380.
I am hopeful that in future we will be able to progressively merge adaptation PRs into a bump/v4.X.0
branch, so we never end up with a "big merge" like this. However one of these adaptation PRs (#8056) predates my new scheme for combined CI, and it wasn't possible to keep that PR viable in the meantime.
In particular this includes adjustments for the Lean PRs
We can get rid of all the
local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue [lean4#2220](https://github.com/leanprover/lean4/pull/2220)
macros across Mathlib (and in any projects that want to write natural number powers of reals).
Changes the default behaviour of simp
to (config := {decide := false})
. This makes simp
(and consequentially norm_num
) less powerful, but also more consistent, and less likely to blow up in long failures. This requires a variety of changes: changing some previously by simp
or norm_num
to decide
or rfl
, or adding (config := {decide := true})
.
This changed the behaviour of simp
so that simp [f]
will only unfold "fully applied" occurrences of f
. The old behaviour can be recovered with simp (config := { unfoldPartialApp := true })
. We may in future add a syntax for this, e.g. simp [!f]
; please provide feedback! In the meantime, we have made the following changes:
(config := { unfoldPartialApp := true })
in some places, to recover the old behaviour@[eqns]
to manually adjust the equation lemmas for a particular definition, recovering the old behaviour just for that definition. See #8371, where we do this for Function.comp
and Function.flip
.This change in Lean may require further changes down the line (e.g. adding the !f
syntax, and/or upstreaming the special treatment for Function.comp
and Function.flip
, and/or removing this special treatment). Please keep an open and skeptical mind about these changes!
Co-authored-by: leanprover-community-mathlib4-bot <leanprover-community-mathlib4-bot@users.noreply.github.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Mauricio Collares <mauricio@collares.org>
@@ -34,8 +34,6 @@ theorem exp_coe (r : ℝ) : exp ℝ (r : ℍ[ℝ]) = ↑(exp ℝ r) :=
(map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
#align quaternion.exp_coe Quaternion.exp_coe
-local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
-
/-- Auxiliary result; if the power series corresponding to `Real.cos` and `Real.sin` evaluated
at `‖q‖` tend to `c` and `s`, then the exponential series tends to `c + (s / ‖q‖)`. -/
theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s : ℝ}
@@ -61,7 +59,7 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
ext n : 1
letI k : ℝ := ↑(2 * n)!
calc
- k⁻¹ • q ^ (2 * n) = k⁻¹ • (-normSq q) ^ n := by rw [pow_mul, hq2]; norm_cast
+ k⁻¹ • q ^ (2 * n) = k⁻¹ • (-normSq q) ^ n := by rw [pow_mul, hq2]
_ = k⁻¹ • ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) := ?_
_ = ↑((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n) / k) := ?_
· congr 1
@@ -77,11 +75,11 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
calc
k⁻¹ • q ^ (2 * n + 1) = k⁻¹ • ((-normSq q) ^ n * q) := by
rw [pow_succ', pow_mul, hq2]
- norm_cast
_ = k⁻¹ • ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n)) • q := ?_
_ = ((-1 : ℝ) ^ n * ‖q‖ ^ (2 * n + 1) / k / ‖q‖) • q := ?_
· congr 1
rw [neg_pow, normSq_eq_norm_mul_self, pow_mul, sq, ← coe_mul_eq_smul]
+ norm_cast
· rw [smul_smul]
congr 1
simp_rw [pow_succ', mul_div_assoc, div_div_cancel_left' hqn]
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -49,9 +49,9 @@ theorem hasSum_expSeries_of_imaginary {q : Quaternion ℝ} (hq : q.re = 0) {c s
simp_rw [norm_zero] at hc
convert hc using 1
ext (_ | n) : 1
- · rw [pow_zero, Nat.zero_eq, MulZeroClass.mul_zero, pow_zero, Nat.factorial_zero, Nat.cast_one,
+ · rw [pow_zero, Nat.zero_eq, mul_zero, pow_zero, Nat.factorial_zero, Nat.cast_one,
div_one, one_mul, Pi.single_eq_same, coe_one]
- · rw [zero_pow (mul_pos two_pos (Nat.succ_pos _)), MulZeroClass.mul_zero, zero_div,
+ · rw [zero_pow (mul_pos two_pos (Nat.succ_pos _)), mul_zero, zero_div,
Pi.single_eq_of_ne n.succ_ne_zero, coe_zero]
simp_rw [expSeries_apply_eq]
have hq2 : q ^ 2 = -normSq q := sq_eq_neg_normSq.mpr hq
@@ -124,7 +124,7 @@ theorem normSq_exp (q : ℍ[ℝ]) : normSq (exp ℝ q) = exp ℝ q.re ^ 2 :=
obtain hv | hv := eq_or_ne ‖q.im‖ 0
· simp [hv]
rw [normSq_add, normSq_smul, star_smul, coe_mul_eq_smul, smul_re, smul_re, star_re, im_re,
- smul_zero, smul_zero, MulZeroClass.mul_zero, add_zero, div_pow, normSq_coe,
+ smul_zero, smul_zero, mul_zero, add_zero, div_pow, normSq_coe,
normSq_eq_norm_mul_self, ← sq, div_mul_cancel _ (pow_ne_zero _ hv)]
_ = exp ℝ q.re ^ 2 := by rw [Real.cos_sq_add_sin_sq, mul_one]
@@ -34,8 +34,7 @@ theorem exp_coe (r : ℝ) : exp ℝ (r : ℍ[ℝ]) = ↑(exp ℝ r) :=
(map_exp ℝ (algebraMap ℝ ℍ[ℝ]) (continuous_algebraMap _ _) _).symm
#align quaternion.exp_coe Quaternion.exp_coe
-local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y)
--- porting note: lean4#2220
+local macro_rules | `($x ^ $y) => `(HPow.hPow $x $y) -- Porting note: See issue lean4#2220
/-- Auxiliary result; if the power series corresponding to `Real.cos` and `Real.sin` evaluated
at `‖q‖` tend to `c` and `s`, then the exponential series tends to `c + (s / ‖q‖)`. -/
@@ -2,16 +2,13 @@
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-
-! This file was ported from Lean 3 source module analysis.normed_space.quaternion_exponential
-! leanprover-community/mathlib commit f0c8bf9245297a541f468be517f1bde6195105e9
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.Quaternion
import Mathlib.Analysis.NormedSpace.Exponential
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Series
+#align_import analysis.normed_space.quaternion_exponential from "leanprover-community/mathlib"@"f0c8bf9245297a541f468be517f1bde6195105e9"
+
/-!
# Lemmas about `exp` on `Quaternion`s
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file