Lemmas about exp on quaternions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains results about exp on quaternion ℝ.
Main results #
quaternion.exp_eq: the general expansion of the quaternion exponential in terms ofreal.cosandreal.sin.quaternion.exp_of_re_eq_zero: the special case when the quaternion has a zero real part.quaternion.norm_exp: the norm of the quaternion exponential is the norm of the exponential of the real part.
theorem
quaternion.has_sum_exp_series_of_imaginary
{q : quaternion ℝ}
(hq : q.re = 0)
{c s : ℝ}
(hc : has_sum (λ (n : ℕ), (-1) ^ n * ‖q‖ ^ (2 * n) / ↑((2 * n).factorial)) c)
(hs : has_sum (λ (n : ℕ), (-1) ^ n * ‖q‖ ^ (2 * n + 1) / ↑((2 * n + 1).factorial)) s) :
Auxiliary result; if the power series corresponding to real.cos and real.sin evaluated
at ‖q‖ tend to c and s, then the exponential series tends to c + (s / ‖q‖).