Slash actions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines a class of slash actions, which are families of right actions of a given group
parametrized by some Type. This is modeled on the slash action of GL_pos (fin 2) ℝ
on the space
of modular forms.
Notation #
In the modular_form
locale, this provides
f ∣[k;γ] A
: thek
thγ
-compatible slash action byA
onf
f ∣[k] A
: thek
thℂ
-compatible slash action byA
onf
; a shorthand forf ∣[k;ℂ] A
- map : β → G → α → α
- zero_slash : ∀ (k : β) (g : G), slash_action.map γ k g 0 = 0
- slash_one : ∀ (k : β) (a : α), slash_action.map γ k 1 a = a
- slash_mul : ∀ (k : β) (g h : G) (a : α), slash_action.map γ k (g * h) a = slash_action.map γ k h (slash_action.map γ k g a)
- smul_slash : ∀ (k : β) (g : G) (a : α) (z : γ), slash_action.map γ k g (z • a) = z • slash_action.map γ k g a
- add_slash : ∀ (k : β) (g : G) (a b : α), slash_action.map γ k g (a + b) = slash_action.map γ k g a + slash_action.map γ k g b
A general version of the slash action of the space of modular forms.
Instances of this typeclass
Instances of other typeclasses for slash_action
- slash_action.has_sizeof_inst
Slash_action induced by a monoid homomorphism.
Equations
- monoid_hom_slash_action h = {map := λ (k : β) (g : H), slash_action.map γ k (⇑h g), zero_slash := _, slash_one := _, slash_mul := _, smul_slash := _, add_slash := _}
The weight k
action of GL(2, ℝ)⁺
on functions f : ℍ → ℂ
.
Equations
- modular_form.complex.slash_action = {map := modular_form.slash, zero_slash := zero_slash, slash_one := slash_one, slash_mul := slash_mul, smul_slash := modular_form.complex.slash_action._proof_1, add_slash := add_slash}
The constant function 1 is invariant under any element of SL(2, ℤ)
.
A function f : ℍ → ℂ
is slash_invariant
, of weight k ∈ ℤ
and level Γ
,
if for every matrix γ ∈ Γ
we have f(γ • z)= (c*z+d)^k f(z)
where γ= ![![a, b], ![c, d]]
,
and it acts on ℍ
via Möbius transformations.