Mul-opposite subgroups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Tags #
subgroup, subgroups
An additive subgroup H
of G
determines an additive subgroup H.opposite
of the
opposite additive group Gᵃᵒᵖ
.
Equations
A subgroup H
of G
determines a subgroup H.opposite
of the opposite group Gᵐᵒᵖ
.
def
subgroup.opposite_equiv
{G : Type u_1}
[group G]
(H : subgroup G) :
↥H ≃ ↥(⇑subgroup.opposite H)
Bijection between a subgroup H
and its opposite.
Equations
def
add_subgroup.opposite_equiv
{G : Type u_1}
[add_group G]
(H : add_subgroup G) :
↥H ≃ ↥(⇑add_subgroup.opposite H)
Bijection between an additive subgroup H
and its opposite.
Equations
@[simp]
theorem
subgroup.opposite_equiv_symm_apply_coe
{G : Type u_1}
[group G]
(H : subgroup G)
(b : {b // (λ (x : Gᵐᵒᵖ), x ∈ ⇑subgroup.opposite H) b}) :
↑(⇑(H.opposite_equiv.symm) b) = mul_opposite.unop ↑b
@[simp]
theorem
add_subgroup.opposite_equiv_symm_apply_coe
{G : Type u_1}
[add_group G]
(H : add_subgroup G)
(b : {b // (λ (x : Gᵃᵒᵖ), x ∈ ⇑add_subgroup.opposite H) b}) :
↑(⇑(H.opposite_equiv.symm) b) = add_opposite.unop ↑b
@[simp]
theorem
subgroup.opposite_equiv_apply_coe
{G : Type u_1}
[group G]
(H : subgroup G)
(a : {a // (λ (x : G), x ∈ H) a}) :
↑(⇑(H.opposite_equiv) a) = mul_opposite.op ↑a
@[simp]
theorem
add_subgroup.opposite_equiv_apply_coe
{G : Type u_1}
[add_group G]
(H : add_subgroup G)
(a : {a // (λ (x : G), x ∈ H) a}) :
↑(⇑(H.opposite_equiv) a) = add_opposite.op ↑a
@[protected, instance]
def
add_subgroup.opposite.encodable
{G : Type u_1}
[add_group G]
(H : add_subgroup G)
[encodable ↥H] :
Equations
@[protected, instance]
def
add_subgroup.opposite.countable
{G : Type u_1}
[add_group G]
(H : add_subgroup G)
[countable ↥H] :
theorem
add_subgroup.vadd_opposite_add
{G : Type u_1}
[add_group G]
{H : add_subgroup G}
(x g : G)
(h : ↥(⇑add_subgroup.opposite H)) :