Japanese Bracket #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we show that Japanese bracket $(1 + \|x\|^2)^{1/2}$ can be estimated from above
and below by $1 + \|x\|$.
The functions $(1 + \|x\|^2)^{-r/2}$ and $(1 + |x|)^{-r}$ are integrable provided that r
is larger
than the dimension.
Main statements #
integrable_one_add_norm
: the function $(1 + |x|)^{-r}$ is integrableintegrable_jap
the Japanese bracket is integrable
theorem
closed_ball_rpow_sub_one_eq_empty_aux
(E : Type u_1)
[normed_add_comm_group E]
{r t : ℝ}
(hr : 0 < r)
(ht : 1 < t) :
theorem
finite_integral_one_add_norm
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
[finite_dimensional ℝ E]
[measure_theory.measure_space E]
[borel_space E]
[measure_theory.measure_space.volume.is_add_haar_measure]
{r : ℝ}
(hnr : ↑(fdim E) < r) :
theorem
integrable_one_add_norm
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
[finite_dimensional ℝ E]
[measure_theory.measure_space E]
[borel_space E]
[measure_theory.measure_space.volume.is_add_haar_measure]
{r : ℝ}
(hnr : ↑(fdim E) < r) :
measure_theory.integrable (λ (x : E), (1 + ‖x‖) ^ -r) measure_theory.measure_space.volume
theorem
integrable_rpow_neg_one_add_norm_sq
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
[finite_dimensional ℝ E]
[measure_theory.measure_space E]
[borel_space E]
[measure_theory.measure_space.volume.is_add_haar_measure]
{r : ℝ}
(hnr : ↑(fdim E) < r) :
measure_theory.integrable (λ (x : E), (1 + ‖x‖ ^ 2) ^ (-r / 2)) measure_theory.measure_space.volume