Quasi-compact morphisms #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
A morphism of schemes is quasi-compact if the preimages of quasi-compact open sets are quasi-compact.
It suffices to check that preimages of affine open sets are compact
(quasi_compact_iff_forall_affine
).
theorem
algebraic_geometry.quasi_compact_iff
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y) :
algebraic_geometry.quasi_compact f ↔ ∀ (U : set ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)), is_open U → is_compact U → is_compact (⇑(f.val.base) ⁻¹' U)
@[class]
- is_compact_preimage : ∀ (U : set ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)), is_open U → is_compact U → is_compact (⇑(f.val.base) ⁻¹' U)
A morphism is quasi-compact
if the underlying map of topological spaces is, i.e. if the preimages
of quasi-compact open sets are quasi-compact.
theorem
algebraic_geometry.quasi_compact_iff_spectral
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y) :
The affine_target_morphism_property
corresponding to quasi_compact
, asserting that the
domain is a quasi-compact scheme.
Equations
@[protected, instance]
def
algebraic_geometry.quasi_compact_of_is_iso
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y)
[category_theory.is_iso f] :
@[protected, instance]
def
algebraic_geometry.quasi_compact_comp
{X Y Z : algebraic_geometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[algebraic_geometry.quasi_compact f]
[algebraic_geometry.quasi_compact g] :
theorem
algebraic_geometry.is_compact_open_iff_eq_basic_open_union
{X : algebraic_geometry.Scheme}
[algebraic_geometry.is_affine X]
(U : set ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)) :
is_compact U ∧ is_open U ↔ ∃ (s : set ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op ⊤))), s.finite ∧ U = ⋃ (i : ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op ⊤))) (h : i ∈ s), ↑(X.basic_open i)
theorem
algebraic_geometry.quasi_compact_iff_forall_affine
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y) :
@[simp]
theorem
algebraic_geometry.is_compact_basic_open
(X : algebraic_geometry.Scheme)
{U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)}
(hU : is_compact ↑U)
(f : ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op U))) :
is_compact ↑(X.basic_open f)
theorem
algebraic_geometry.quasi_compact.affine_open_cover_tfae
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y) :
[algebraic_geometry.quasi_compact f, ∃ (𝒰 : Y.open_cover) [_inst_1 : ∀ (i : 𝒰.J), algebraic_geometry.is_affine (𝒰.obj i)], ∀ (i : 𝒰.J), compact_space ↥((category_theory.limits.pullback f (𝒰.map i)).to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier), ∀ (𝒰 : Y.open_cover) [_inst_2 : ∀ (i : 𝒰.J), algebraic_geometry.is_affine (𝒰.obj i)] (i : 𝒰.J), compact_space ↥((category_theory.limits.pullback f (𝒰.map i)).to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier), ∀ {U : algebraic_geometry.Scheme} (g : U ⟶ Y) [_inst_3 : algebraic_geometry.is_affine U] [_inst_4 : algebraic_geometry.is_open_immersion g], compact_space ↥((category_theory.limits.pullback f g).to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier), ∃ {ι : Type u} (U : ι → topological_space.opens ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)) (hU : supr U = ⊤) (hU' : ∀ (i : ι), algebraic_geometry.is_affine_open (U i)), ∀ (i : ι), compact_space ↥(⇑(f.val.base) ⁻¹' (U i).carrier)].tfae
theorem
algebraic_geometry.quasi_compact.open_cover_tfae
{X Y : algebraic_geometry.Scheme}
(f : X ⟶ Y) :
[algebraic_geometry.quasi_compact f, ∃ (𝒰 : Y.open_cover), ∀ (i : 𝒰.J), algebraic_geometry.quasi_compact category_theory.limits.pullback.snd, ∀ (𝒰 : Y.open_cover) (i : 𝒰.J), algebraic_geometry.quasi_compact category_theory.limits.pullback.snd, ∀ (U : topological_space.opens ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)), algebraic_geometry.quasi_compact (f ∣_ U), ∀ {U : algebraic_geometry.Scheme} (g : U ⟶ Y) [_inst_1 : algebraic_geometry.is_open_immersion g], algebraic_geometry.quasi_compact category_theory.limits.pullback.snd, ∃ {ι : Type u} (U : ι → topological_space.opens ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)) (hU : supr U = ⊤), ∀ (i : ι), algebraic_geometry.quasi_compact (f ∣_ U i)].tfae
theorem
algebraic_geometry.quasi_compact.affine_open_cover_iff
{X Y : algebraic_geometry.Scheme}
(𝒰 : Y.open_cover)
[∀ (i : 𝒰.J), algebraic_geometry.is_affine (𝒰.obj i)]
(f : X ⟶ Y) :
theorem
algebraic_geometry.quasi_compact.open_cover_iff
{X Y : algebraic_geometry.Scheme}
(𝒰 : Y.open_cover)
(f : X ⟶ Y) :
@[protected, instance]
@[protected, instance]
theorem
algebraic_geometry.compact_open_induction_on
{X : algebraic_geometry.Scheme}
{P : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier) → Prop}
(S : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier))
(hS : is_compact S.carrier)
(h₁ : P ⊥)
(h₂ : ∀ (S : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)), is_compact S.carrier → ∀ (U : ↥(X.affine_opens)), P S → P (S ⊔ ↑U)) :
P S
theorem
algebraic_geometry.exists_pow_mul_eq_zero_of_res_basic_open_eq_zero_of_is_affine_open
(X : algebraic_geometry.Scheme)
{U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)}
(hU : algebraic_geometry.is_affine_open U)
(x f : ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op U)))
(H : Top.presheaf.restrict_open x (X.basic_open f) _ = 0) :
theorem
algebraic_geometry.exists_pow_mul_eq_zero_of_res_basic_open_eq_zero_of_is_compact
(X : algebraic_geometry.Scheme)
{U : topological_space.opens ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)}
(hU : is_compact U.carrier)
(x f : ↥(X.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op U)))
(H : Top.presheaf.restrict_open x (X.basic_open f) _ = 0) :
If x : Γ(X, U)
is zero on D(f)
for some f : Γ(X, U)
, and U
is quasi-compact, then
f ^ n * x = 0
for some n
.