Tannaka duality for rings #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
A ring R
is equivalent to
the endomorphisms of the additive forgetful functor Module R ⥤ AddCommGroup
.
An ingredient of Tannaka duality for rings:
A ring R
is equivalent to
the endomorphisms of the additive forgetful functor Module R ⥤ AddCommGroup
.
Equations
- ring_equiv_End_forget₂ R = {to_fun := λ (r : R), {app := λ (M : Module R), distrib_mul_action.to_add_monoid_hom ↥M r, naturality' := _}, inv_fun := λ (φ : category_theory.End (category_theory.AdditiveFunctor.of (category_theory.forget₂ (Module R) AddCommGroup))), ⇑(φ.app (Module.of R R)) 1, left_inv := _, right_inv := _, map_mul' := _, map_add' := _}