This webpage is about Lean 3, which is effectively obsolete; the community has migrated to Lean 4.

Jump to the corresponding page on the main Lean 4 website.

Library Style Guidelines #

Author: Jeremy Avigad

In addition to the naming conventions, files in the Lean library generally adhere to the following guidelines and conventions. Having a uniform style makes it easier to browse the library and read the contents, but these are meant to be guidelines rather than rigid rules.

Variable conventions #

Types with a mathematical content are expressed with the usual mathematical notation, often with an upper case letter (G for a group, R for a ring, K or 𝕜 for a field, E for a vector space, ...). This convention is not followed in older files, where greek letters are used for all types. Pull requests renaming type variables in these files are welcome.

Line length #

Lines should not be longer than 100 characters. This makes files easier to read, especially on a small screen or in a small window.

Header and imports #

The file header should contain copyright information, a list of all the authors who have made significant contributions to the file, and a description of the contents. Do all imports right after the header, without a line break, on separate lines.

Copyright (c) 2015 Joe Cool. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Joe Cool.
import data.nat

(Tip: If you're editing mathlib in VS Code, you can write copy and then press TAB to generate a skeleton of the copyright header.)

Regarding the list of authors: we don't have strict rules on what contributions qualify for inclusion there. The general idea is that the people listed there should be the ones we would reach out to if we had questions about the design or development of the Lean code.

Module docstrings #

After the copyright header and the imports, please add a module docstring (delimited with /-! and -/) containing

In total, the module docstring should look something like this:

# Foos and bars

In this file we introduce `foo` and `bar`,
two main concepts in the theory of xyzzyology.

## Main results

- `exists_foo`: the main existence theorem of `foo`s.
- `bar_of_foo`: a construction of a `bar`, given a `foo`.
- `bar_eq`    : the main classification theorem of `bar`s.

## Notation

 - `|_|` : The barrification operator, see `bar_of_foo`.

## References

See [Thales600BC] for the original account on Xyzzyology.

New bibliography entries should be added to docs/references.bib.

See our documentation requirements for more suggestions and examples.

Structuring definitions and theorems #

These guidelines hold for declarations starting with def, lemma and theorem. For "theorem statement", also read "type of a definition" and for "proof" also read "definition body".

Use spaces around ":", ":=" or infix operators. Put them before a line break rather than at the beginning of the next line.

Use two spaces to indent.

After stating the theorem, we generally do not indent the first line of a proof, so that the proof is "flush left" in the file.

open nat
theorem nat_case {P : nat → Prop} (n : nat) (H1 : P 0) (H2 : ∀ m, P (succ m)) : P n :=
nat.induction_on n H1 (assume m IH, H2 m)

If the theorem statement requires multiple lines, indent the subsequent lines:

namespace nat

lemma le_induction {P : ℕ → Prop} {m}
  (h0 : P m) (h1 : ∀ n, m ≤ n → P n → P (n + 1)) :
  ∀ n, m ≤ n → P n :=
by { apply nat.less_than_or_equal.rec h0, exact h1 }

def decreasing_induction {P : ℕ → Sort*} (h : ∀ n, P (n + 1) → P n) {m n : ℕ} (mn : m ≤ n)
  (hP : P n) : P m :=
le_rec_on mn (λ k ih hsk, ih $ h k hsk) (λ h, h) hP

end nat

When a proof term takes multiple arguments, it is sometimes clearer, and often necessary, to put some of the arguments on subsequent lines. In that case, indent each argument.

open nat
axiom zero_or_succ (n : nat) : n = zero ∨ n = succ (pred n)
theorem nat_discriminate {B : Prop} {n : nat} (H1: n = 0 → B) (H2 : ∀ m, n = succ m → B) : B :=
or.elim (zero_or_succ n)
  (assume H3 : n = zero, H1 H3)
  (assume H3 : n = succ (pred n), H2 (pred n) H3)

Don't orphan parentheses; keep them with their arguments.

Here is a longer example.

open list
variable {T : Type}

theorem mem_split {x : T} {l : list T} : x ∈ l → ∃ s t : list T, l = s ++ (x::t) :=
list.rec_on l
  (assume H : x ∈ [], false.elim (iff.elim_left (mem_nil_iff _) H))
  (assume y l,
    assume IH : x ∈ l → ∃ s t : list T, l = s ++ (x::t),
    assume H : x ∈ y::l,
    or.elim (eq_or_mem_of_mem_cons H)
      (assume H1 : x = y,
        exists.intro [] (exists.intro l (by rw H1; refl)))
      (assume H1 : x ∈ l,
        let ⟨s, (H2 : ∃ t : list T, l = s ++ (x::t))⟩ := IH H1,
            ⟨t, (H3 : l = s ++ (x::t))⟩ := H2 in
        have H4 : y :: l = (y::s) ++ (x::t), by rw H3; refl,
        exists.intro (y::s) (exists.intro t H4)))

A short declaration can be written on a single line:

open nat
lemma succ_pos : ∀ n : ℕ, 0 < succ n := zero_lt_succ

def square (x : nat) : nat := x * x

A "have" / "from" pair can be put on the same line.

have H2 : n ≠ succ k, from subst (ne_symm (succ_ne_zero k)) (symm H),

You can also put it on the next line, if the justification is long.

have H2 : n ≠ succ k,
  from subst (ne_symm (succ_ne_zero k)) (symm H),

If the justification takes more than a single line, keep the "from" on the same line as the "have", and then begin the justification indented on the next line.

have n ≠ succ k, from
    (assume H4 : n = succ k,
      have H5 : succ l = succ k, from trans (symm H) H4,
      have H6 : l = k, from succ_inj H5,
      absurd H6 H2)))),

When the arguments themselves are long enough to require line breaks, use an additional indent for every line after the first, as in the following example:

open nat eq algebra
theorem add_right_inj {n m k : nat} : n + m = n + k → m = k :=
nat.rec_on n
  (assume H : 0 + m = 0 + k,
        m = 0 + m : eq.symm (zero_add m)
      ... = 0 + k : H
      ... = k     : zero_add _)
  (assume (n : nat) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k),
    have H2 : succ (n + m) = succ (n + k), from
        succ (n + m) = succ n + m   : eq.symm (succ_add n m)
                 ... = succ n + k   : H
                 ... = succ (n + k) : succ_add n k,
    have H3 : n + m = n + k, from succ.inj H2,
    IH H3)

In a class or structure definition, we do not indent fields, as in:

structure principal_seg {α β : Type*} (r : α → α → Prop) (s : β → β → Prop) extends r ≼o s :=
(top : β)
(down : ∀ b, s b top ↔ ∃ a, to_order_embedding a = b)

class semimodule (R : Type u) (M : Type v) [semiring R]
  [add_comm_monoid M] extends distrib_mul_action R M :=
(add_smul  : ∀ (r s : R) (x : M), (r + s) • x = r • x + s • x)
(zero_smul : ∀ x : M, (0 : R) • x = 0)

When using a constructor taking several arguments in a definition, arguments line up, as in:

theorem sub_eq_zero_iff_le {a b : ordinal} : a - b = 0 ↔ a ≤ b :=
⟨λ h, by simpa [h] using le_add_sub a b,
 λ h, by rwa [← le_zero, sub_le, add_zero]⟩

When defining instances, opening and closing braces are not alone on their line. The content is indented by two spaces and := line up, as in:

instance : partial_order (topological_space α) :=
{ le          := λ t s, t.is_open ≤ s.is_open,
  le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₁ h₂,
  le_refl     := assume t, le_refl t.is_open,
  le_trans    := assume a b c h₁ h₂, @le_trans _ _ a.is_open b.is_open c.is_open h₁ h₂ }

Hypotheses Left of Colon #

Generally, having arguments to the left of the colon is preferred over having arguments in universal quantifiers or implications, if the proof starts by introducing these variables. For instance:

example (n : ℝ) (h : 1 < n) : 0 < n := by linarith

is preferred over

example (n : ℝ) : 1 < n → 0 < n := λ h, by linarith


example (n : ℕ) : 0 ≤ n := dec_trivial

is preferred over

example : ∀ (n : ℕ), 0 ≤ n := λ n, dec_trivial

Binders #

Use a space after binders:

example : ∀ α : Type, ∀ x : α, ∃ y, y = x :=
λ (α : Type) (x : α), exists.intro x rfl

Calculations #

There is some flexibility in how you write calculational proofs. In general, it looks nice when the comparisons and justifications line up neatly:

import data.list
open list
variable {α : Type}

theorem reverse_reverse : ∀ (l : list α), reverse (reverse l) = l
| []       := rfl
| (a :: l) := calc
    reverse (reverse (a :: l)) = reverse (concat a (reverse l))     : rfl
                           ... = reverse (reverse l ++ [a])         : concat_eq_append
                           ... = reverse [a] ++ reverse (reverse l) : reverse_append
                           ... = reverse [a] ++ l                   : reverse_reverse
                           ... = a :: l                             : rfl

To be more compact, for example, you may do this only after the first line:

import data.list
open list
variable {α : Type}

theorem reverse_reverse : ∀ (l : list α), reverse (reverse l) = l
| []       := rfl
| (a :: l) := calc
    reverse (reverse (a :: l))
          = reverse (concat a (reverse l))     : rfl
      ... = reverse (reverse l ++ [a])         : concat_eq_append
      ... = reverse [a] ++ reverse (reverse l) : reverse_append
      ... = reverse [a] ++ l                   : reverse_reverse
      ... = a :: l                             : rfl

Tactic mode #

When opening a tactic block, begin is not indented but everything inside is indented, as in:

lemma div_self (a : α) : a ≠ 0 → a / a = (1:α) :=
  intro hna,
  have wit_aa := quotient_mul_add_remainder_eq a a,
  have a_mod_a := mod_self a,
  dsimp [(%)] at a_mod_a,
  simp [a_mod_a] at wit_aa,
  have h1 : 1 * a = a, from one_mul a,
  conv at wit_aa {for a [4] {rw ←h1}},
  exact eq_of_mul_eq_mul_right hna wit_aa

A more complicated example, mixing term mode and tactic mode:

lemma nhds_supr {ι : Sort w} {t : ι → topological_space α} {a : α} :
  @nhds α (supr t) a = (⨅i, @nhds α (t i) a) :=
  (le_infi $ assume i, nhds_mono $ le_supr _ _)
    rw [supr_eq_generate_from, nhds_generate_from],
    exact (le_infi $ assume s, le_infi $ assume ⟨hs, hi⟩,
        simp at hi, cases hi with i hi,
        exact (infi_le_of_le i $ le_principal_iff.mpr $ @mem_nhds_sets α (t i) _ _ hi hs)

When new goals arise as side conditions or steps, they are enclosed in focussing braces and indented (except possibly the last goal, if its proof is much longer than the proofs of the other goals). Braces are not alone on their line.

lemma mem_nhds_of_is_topological_basis {a : α} {s : set α} {b : set (set α)}
  (hb : is_topological_basis b) : s ∈ (𝓝 a).sets ↔ ∃ t ∈ b, a ∈ t ∧ t ⊆ s :=
  rw [hb.2.2, nhds_generate_from, infi_sets_eq'],
  { simpa [and_comm, and.left_comm] },
  { exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩,
      have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩,
      let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in
      ⟨u, ⟨hu₂, hu₁⟩, by simpa using hu₃⟩ },
  { suffices : a ∈ (⋃₀ b), { simpa [and_comm] },
    { rw [hb.2.1], trivial } }

The final step in a begin ... end block may be followed by comma, but there is no style rule requiring it. (Many authors prefer the comma, so that placing the cursor after it displays "goals accomplished" in the infoview, but others dislike it on the basis of the disconcerting grammar.)

Often t0; t1 is used to execute t0 and then t1 on all new goals. But ; is not a , so either write the tactics in one line, or indent the following tacic.

  cases x;
    simp [a, b, c, d]

For single line tactic proofs (or short tactic proofs embedded in a term), it is preferable to use by ... rather than begin ... end.

If you are using multiple tactics inside a by ... block, use braces by { tac1, tac2 } rather than abusing the ; operator by tac1; tac2, which should only be used when multiple goals need to be processed by tac2. (This style rule is not yet followed in the older parts of mathlib.)

In general, you should put a single tactic invocation per line, unless you are closing a goal with a proof that fits entirely on a single line. Short sequences of tactics that correspond to a single mathematical idea can also be put on a single line, as in cases bla, clear h or induction n, { simp } or rw [foo], simp_rw [bar].

  by_cases h : x = 0,
  { rw h, exact hzero ha },
  { rw h,
    have h' : ..., from H ha,
    simp_rw [h', hb],
    ... }

Very short goals can be closed right away using swap or work_on_goal if needed, to avoid additional indentation in the rest of the proof.

  rw [h], swap, { exact h' },

We generally use a blank line to separate theorems and definitions, but this can be omitted, for example, to group together a number of short definitions, or to group together a definition and notation.

Normal forms #

Some statements are equivalent. For instance, there are several equivalent ways to require that a subset s of a type is nonempty. For another example, given a : α, the corresponding element of option α can be equivalently written as some a or (a : option α). In general, we try to settle on one standard form, called the normal form, and use it both in statements and conclusions of theorems. In the above examples, this would be s.nonempty (which gives access to dot notation) and (a : option α). Often, simp lemmas will be registered to convert the other equivalent forms to the normal form.

There is a special case to this rule. In types with a bottom element, it is equivalent to require hlt : ⊥ < x or hne : x ≠ ⊥, and it is not clear which one would be better as a normal form since both have their pros and cons. An analogous situation occurs with hlt : x < ⊤ and hne : x ≠ ⊤ in types with a top element. Since it is very easy to convert from hlt to hne (by using or' depending on the direction we want) while the other conversion is more lengthy, we use hne in assumptions of theorems (as this is the easier assumption to check), and hlt in conclusions of theorems (as this is the more powerful result to use). A common usage of this rule is with naturals, where ⊥ = 0.

Comments #

Use module doc delimiters /-! -/ to provide section headers and separators since these get incorporated into the auto-generated docs, and use /- -/ for more technical comments (e.g. TODOs and implementation notes) or for comments in proofs. Use -- for short or in-line comments.

Documentation strings for declarations are delimited with /-- -/.

See our documentation requirements for more suggestions and examples.

Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad