Nilpotent elements in quotient rings #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
theorem
ideal.is_radical_iff_quotient_reduced
{R : Type u_1}
[comm_ring R]
(I : ideal R) :
I.is_radical ↔ is_reduced (R ⧸ I)
theorem
ideal.is_nilpotent.induction_on
{S : Type u_2}
[comm_ring S]
(I : ideal S)
(hI : is_nilpotent I)
{P : Π ⦃S : Type u_2⦄ [_inst_4 : comm_ring S], ideal S → Prop}
(h₁ : ∀ ⦃S : Type u_2⦄ [_inst_5 : comm_ring S] (I : ideal S), I ^ 2 = ⊥ → P I)
(h₂ : ∀ ⦃S : Type u_2⦄ [_inst_6 : comm_ring S] (I J : ideal S), I ≤ J → P I → P (ideal.map (ideal.quotient.mk I) J) → P J) :
P I
Let P
be a property on ideals. If P
holds for square-zero ideals, and if
P I → P (J ⧸ I) → P J
, then P
holds for all nilpotent ideals.
theorem
is_nilpotent.is_unit_quotient_mk_iff
{R : Type u_1}
[comm_ring R]
{I : ideal R}
(hI : is_nilpotent I)
{x : R} :
is_unit (⇑(ideal.quotient.mk I) x) ↔ is_unit x