Canonical homomorphism from a finite family of monoids #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines the construction of the canonical homomorphism from a family of monoids.
Given a family of morphisms ϕ i : N i →* M
for each i : ι
where elements in the
images of different morphisms commute, we obtain a canonical morphism
monoid_hom.noncomm_pi_coprod : (Π i, N i) →* M
that coincides with ϕ
Main definitions #
monoid_hom.noncomm_pi_coprod : (Π i, N i) →* M
is the main homomorphismsubgroup.noncomm_pi_coprod : (Π i, H i) →* G
is the specialization toH i : subgroup G
and the subgroup embedding.
Main theorems #
monoid_hom.noncomm_pi_coprod
coincides withϕ i
when restricted toN i
monoid_hom.noncomm_pi_coprod_mrange
: The range ofmonoid_hom.noncomm_pi_coprod
is⨆ (i : ι), (ϕ i).mrange
monoid_hom.noncomm_pi_coprod_range
: The range ofmonoid_hom.noncomm_pi_coprod
is⨆ (i : ι), (ϕ i).range
subgroup.noncomm_pi_coprod_range
: The range ofsubgroup.noncomm_pi_coprod
is⨆ (i : ι), H i
.monoid_hom.injective_noncomm_pi_coprod_of_independent
: in the case of groups,pi_hom.hom
is injective if theϕ
are injective and the ranges of theϕ
are independent.monoid_hom.independent_range_of_coprime_order
: If theN i
have coprime orders, then the ranges of theϕ
are independent.subgroup.independent_of_coprime_order
: If commuting normal subgroupsH i
have coprime orders, they are independent.
finset.noncomm_sum
is “injective” in f
if f
maps into independent subgroups.
This generalizes (one direction of) add_subgroup.disjoint_iff_add_eq_zero
.
finset.noncomm_prod
is “injective” in f
if f
maps into independent subgroups. This
generalizes (one direction of) subgroup.disjoint_iff_mul_eq_one
.
The canonical homomorphism from a family of monoids.
Equations
- monoid_hom.noncomm_pi_coprod ϕ hcomm = {to_fun := λ (f : Π (i : ι), N i), finset.univ.noncomm_prod (λ (i : ι), ⇑(ϕ i) (f i)) _, map_one' := _, map_mul' := _}
The canonical homomorphism from a family of additive monoids.
See also linear_map.lsum
for a linear version without the commutativity assumption.
Equations
- add_monoid_hom.noncomm_pi_coprod ϕ hcomm = {to_fun := λ (f : Π (i : ι), N i), finset.univ.noncomm_sum (λ (i : ι), ⇑(ϕ i) (f i)) _, map_zero' := _, map_add' := _}
The universal property of noncomm_pi_coprod
Equations
The universal property of noncomm_pi_coprod
Equations
- add_monoid_hom.noncomm_pi_coprod_equiv = {to_fun := λ (ϕ : {ϕ // pairwise (λ (i j : ι), ∀ (x : N i) (y : N j), add_commute (⇑(ϕ i) x) (⇑(ϕ j) y))}), add_monoid_hom.noncomm_pi_coprod ϕ.val _, inv_fun := λ (f : (Π (i : ι), N i) →+ M), ⟨λ (i : ι), f.comp (add_monoid_hom.single N i), _⟩, left_inv := _, right_inv := _}
The canonical homomorphism from a family of additive subgroups where elements from different subgroups commute
Equations
- add_subgroup.noncomm_pi_coprod hcomm = add_monoid_hom.noncomm_pi_coprod (λ (i : ι), (H i).subtype) _
The canonical homomorphism from a family of subgroups where elements from different subgroups commute
Equations
- subgroup.noncomm_pi_coprod hcomm = monoid_hom.noncomm_pi_coprod (λ (i : ι), (H i).subtype) _