Prime powers #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file deals with prime powers: numbers which are positive integer powers of a single prime.
n
is a prime power if there is a prime p
and a positive natural k
such that n
can be
written as p^k
.
Instances for is_prime_pow
An equivalent definition for prime powers: n
is a prime power iff there is a prime p
and a
natural k
such that n
can be written as p^(k+1)
.
theorem
is_prime_pow.not_unit
{R : Type u_1}
[comm_monoid_with_zero R]
{n : R}
(h : is_prime_pow n) :
theorem
is_prime_pow.pow
{R : Type u_1}
[comm_monoid_with_zero R]
{n : R}
(hn : is_prime_pow n)
{k : ℕ}
(hk : k ≠ 0) :
is_prime_pow (n ^ k)
theorem
is_prime_pow.ne_zero
{R : Type u_1}
[comm_monoid_with_zero R]
[no_zero_divisors R]
{n : R}
(h : is_prime_pow n) :
n ≠ 0
theorem
is_prime_pow.ne_one
{R : Type u_1}
[comm_monoid_with_zero R]
{n : R}
(h : is_prime_pow n) :
n ≠ 1