mathlib3 documentation

algebra.is_prime_pow

Prime powers #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This file deals with prime powers: numbers which are positive integer powers of a single prime.

def is_prime_pow {R : Type u_1} [comm_monoid_with_zero R] (n : R) :
Prop

n is a prime power if there is a prime p and a positive natural k such that n can be written as p^k.

Equations
Instances for is_prime_pow
theorem is_prime_pow_def {R : Type u_1} [comm_monoid_with_zero R] (n : R) :
is_prime_pow n (p : R) (k : ), prime p 0 < k p ^ k = n
theorem is_prime_pow_iff_pow_succ {R : Type u_1} [comm_monoid_with_zero R] (n : R) :
is_prime_pow n (p : R) (k : ), prime p p ^ (k + 1) = n

An equivalent definition for prime powers: n is a prime power iff there is a prime p and a natural k such that n can be written as p^(k+1).

theorem is_prime_pow.not_unit {R : Type u_1} [comm_monoid_with_zero R] {n : R} (h : is_prime_pow n) :
theorem prime.is_prime_pow {R : Type u_1} [comm_monoid_with_zero R] {p : R} (hp : prime p) :
theorem is_prime_pow.pow {R : Type u_1} [comm_monoid_with_zero R] {n : R} (hn : is_prime_pow n) {k : } (hk : k 0) :
theorem is_prime_pow.ne_zero {R : Type u_1} [comm_monoid_with_zero R] [no_zero_divisors R] {n : R} (h : is_prime_pow n) :
n 0
theorem is_prime_pow.ne_one {R : Type u_1} [comm_monoid_with_zero R] {n : R} (h : is_prime_pow n) :
n 1
theorem is_prime_pow_nat_iff (n : ) :
is_prime_pow n (p k : ), nat.prime p 0 < k p ^ k = n
theorem is_prime_pow_nat_iff_bounded (n : ) :
is_prime_pow n (p : ), p n (k : ), k n nat.prime p 0 < k p ^ k = n
@[protected, instance]
Equations
theorem is_prime_pow.dvd {n m : } (hn : is_prime_pow n) (hm : m n) (hm₁ : m 1) :
theorem is_prime_pow.pos {n : } (hn : is_prime_pow n) :
0 < n
theorem is_prime_pow.one_lt {n : } (h : is_prime_pow n) :
1 < n