mathlib3 documentation

group_theory.monoid_localization

Localizations of commutative monoids #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

Localizing a commutative ring at one of its submonoids does not rely on the ring's addition, so we can generalize localizations to commutative monoids.

We characterize the localization of a commutative monoid M at a submonoid S up to isomorphism; that is, a commutative monoid N is the localization of M at S iff we can find a monoid homomorphism f : M →* N satisfying 3 properties:

  1. For all y ∈ S, f y is a unit;
  2. For all z : N, there exists (x, y) : M × S such that z * f y = f x;
  3. For all x, y : M, f x = f y iff there exists c ∈ S such that x * c = y * c.

Given such a localization map f : M →* N, we can define the surjection localization_map.mk' sending (x, y) : M × S to f x * (f y)⁻¹, and localization_map.lift, the homomorphism from N induced by a homomorphism from M which maps elements of S to invertible elements of the codomain. Similarly, given commutative monoids P, Q, a submonoid T of P and a localization map for T from P to Q, then a homomorphism g : M →* P such that g(S) ⊆ T induces a homomorphism of localizations, localization_map.map, from N to Q. We treat the special case of localizing away from an element in the sections away_map and away.

We also define the quotient of M × S by the unique congruence relation (equivalence relation preserving a binary operation) r such that for any other congruence relation s on M × S satisfying '∀ y ∈ S, (1, 1) ∼ (y, y) under s', we have that (x₁, y₁) ∼ (x₂, y₂) by s whenever (x₁, y₁) ∼ (x₂, y₂) by r. We show this relation is equivalent to the standard localization relation. This defines the localization as a quotient type, localization, but the majority of subsequent lemmas in the file are given in terms of localizations up to isomorphism, using maps which satisfy the characteristic predicate.

The Grothendieck group construction corresponds to localizing at the top submonoid, namely making every element invertible.

Implementation notes #

In maths it is natural to reason up to isomorphism, but in Lean we cannot naturally rewrite one structure with an isomorphic one; one way around this is to isolate a predicate characterizing a structure up to isomorphism, and reason about things that satisfy the predicate.

The infimum form of the localization congruence relation is chosen as 'canonical' here, since it shortens some proofs.

To apply a localization map f as a function, we use f.to_map, as coercions don't work well for this structure.

To reason about the localization as a quotient type, use mk_eq_monoid_of_mk' and associated lemmas. These show the quotient map mk : M → S → localization S equals the surjection localization_map.mk' induced by the map monoid_of : localization_map S (localization S) (where of establishes the localization as a quotient type satisfies the characteristic predicate). The lemma mk_eq_monoid_of_mk' hence gives you access to the results in the rest of the file, which are about the localization_map.mk' induced by any localization map.

TODO #

Tags #

localization, monoid localization, quotient monoid, congruence relation, characteristic predicate, commutative monoid, grothendieck group

@[nolint]
structure add_submonoid.localization_map {M : Type u_1} [add_comm_monoid M] (S : add_submonoid M) (N : Type u_2) [add_comm_monoid N] :
Type (max u_1 u_2)

The type of add_monoid homomorphisms satisfying the characteristic predicate: if f : M →+ N satisfies this predicate, then N is isomorphic to the localization of M at S.

Instances for add_submonoid.localization_map
  • add_submonoid.localization_map.has_sizeof_inst
@[nolint]
structure submonoid.localization_map {M : Type u_1} [comm_monoid M] (S : submonoid M) (N : Type u_2) [comm_monoid N] :
Type (max u_1 u_2)

The type of monoid homomorphisms satisfying the characteristic predicate: if f : M →* N satisfies this predicate, then N is isomorphic to the localization of M at S.

Instances for submonoid.localization_map
  • submonoid.localization_map.has_sizeof_inst
def add_localization.r {M : Type u_1} [add_comm_monoid M] (S : add_submonoid M) :

The congruence relation on M × S, M an add_comm_monoid and S an add_submonoid of M, whose quotient is the localization of M at S, defined as the unique congruence relation on M × S such that for any other congruence relation s on M × S where for all y ∈ S, (0, 0) ∼ (y, y) under s, we have that (x₁, y₁) ∼ (x₂, y₂) by r implies (x₁, y₁) ∼ (x₂, y₂) by s.

Equations
def localization.r {M : Type u_1} [comm_monoid M] (S : submonoid M) :
con (M × S)

The congruence relation on M × S, M a comm_monoid and S a submonoid of M, whose quotient is the localization of M at S, defined as the unique congruence relation on M × S such that for any other congruence relation s on M × S where for all y ∈ S, (1, 1) ∼ (y, y) under s, we have that (x₁, y₁) ∼ (x₂, y₂) by r implies (x₁, y₁) ∼ (x₂, y₂) by s.

Equations
def add_localization.r' {M : Type u_1} [add_comm_monoid M] (S : add_submonoid M) :

An alternate form of the congruence relation on M × S, M a comm_monoid and S a submonoid of M, whose quotient is the localization of M at S.

Equations
def localization.r' {M : Type u_1} [comm_monoid M] (S : submonoid M) :
con (M × S)

An alternate form of the congruence relation on M × S, M a comm_monoid and S a submonoid of M, whose quotient is the localization of M at S.

Equations

The congruence relation used to localize a comm_monoid at a submonoid can be expressed equivalently as an infimum (see localization.r) or explicitly (see localization.r').

The additive congruence relation used to localize an add_comm_monoid at a submonoid can be expressed equivalently as an infimum (see add_localization.r) or explicitly (see add_localization.r').

theorem add_localization.r_iff_exists {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {x y : M × S} :
(add_localization.r S) x y (c : S), c + ((y.snd) + x.fst) = c + ((x.snd) + y.fst)
theorem localization.r_iff_exists {M : Type u_1} [comm_monoid M] {S : submonoid M} {x y : M × S} :
(localization.r S) x y (c : S), c * ((y.snd) * x.fst) = c * ((x.snd) * y.fst)
@[irreducible]
def localization {M : Type u_1} [comm_monoid M] (S : submonoid M) :
Type u_1

The localization of a comm_monoid at one of its submonoids (as a quotient type).

Equations
Instances for localization
@[protected, instance]
Equations
@[protected, irreducible]

Multiplication in a localization is defined as ⟨a, b⟩ * ⟨c, d⟩ = ⟨a * c, b * d⟩.

Equations
@[protected]

Addition in an add_localization is defined as ⟨a, b⟩ + ⟨c, d⟩ = ⟨a + c, b + d⟩.

Should not be confused with the ring localization counterpart localization.add, which maps ⟨a, b⟩ + ⟨c, d⟩ to ⟨d * a + b * c, b * d⟩.

Equations
@[protected, instance]
Equations
@[protected, irreducible]
def localization.one {M : Type u_1} [comm_monoid M] (S : submonoid M) :

The identity element of a localization is defined as ⟨1, 1⟩.

Equations
@[protected]

The identity element of an add_localization is defined as ⟨0, 0⟩.

Should not be confused with the ring localization counterpart localization.zero, which is defined as ⟨0, 1⟩.

Equations
@[protected, instance]
Equations
@[protected, irreducible]

Exponentiation in a localization is defined as ⟨a, b⟩ ^ n = ⟨a ^ n, b ^ n⟩.

This is a separate irreducible def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less.

Equations
@[protected]

Multiplication with a natural in an add_localization is defined as n • ⟨a, b⟩ = ⟨n • a, n • b⟩.

This is a separate irreducible def to ensure the elaborator doesn't waste its time trying to unify some huge recursive definition with itself, but unfolded one step less.

Equations
@[protected, instance]
Equations
def localization.mk {M : Type u_1} [comm_monoid M] {S : submonoid M} (x : M) (y : S) :

Given a comm_monoid M and submonoid S, mk sends x : M, y ∈ S to the equivalence class of (x, y) in the localization of M at S.

Equations
def add_localization.mk {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} (x : M) (y : S) :

Given an add_comm_monoid M and submonoid S, mk sends x : M, y ∈ S to the equivalence class of (x, y) in the localization of M at S.

Equations
theorem add_localization.mk_eq_mk_iff {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {a c : M} {b d : S} :
theorem localization.mk_eq_mk_iff {M : Type u_1} [comm_monoid M] {S : submonoid M} {a c : M} {b d : S} :
def localization.rec {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : localization S Sort u} (f : Π (a : M) (b : S), p (localization.mk a b)) (H : {a c : M} {b d : S} (h : (localization.r S) (a, b) (c, d)), eq.rec (f a b) _ = f c d) (x : localization S) :
p x

Dependent recursion principle for localizations: given elements f a b : p (mk a b) for all a b, such that r S (a, b) (c, d) implies f a b = f c d (with the correct coercions), then f is defined on the whole localization S.

Equations
def add_localization.rec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : add_localization S Sort u} (f : Π (a : M) (b : S), p (add_localization.mk a b)) (H : {a c : M} {b d : S} (h : (add_localization.r S) (a, b) (c, d)), eq.rec (f a b) _ = f c d) (x : add_localization S) :
p x

Dependent recursion principle for add_localizations: given elements f a b : p (mk a b) for all a b, such that r S (a, b) (c, d) implies f a b = f c d (with the correct coercions), then f is defined on the whole add_localization S.

Equations
def localization.rec_on_subsingleton₂ {M : Type u_1} [comm_monoid M] {S : submonoid M} {r : localization S localization S Sort u} [h : (a c : M) (b d : S), subsingleton (r (localization.mk a b) (localization.mk c d))] (x y : localization S) (f : Π (a c : M) (b d : S), r (localization.mk a b) (localization.mk c d)) :
r x y

Copy of quotient.rec_on_subsingleton₂ for localization

Equations
def add_localization.rec_on_subsingleton₂ {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {r : add_localization S add_localization S Sort u} [h : (a c : M) (b d : S), subsingleton (r (add_localization.mk a b) (add_localization.mk c d))] (x y : add_localization S) (f : Π (a c : M) (b d : S), r (add_localization.mk a b) (add_localization.mk c d)) :
r x y

Copy of quotient.rec_on_subsingleton₂ for add_localization

Equations
theorem add_localization.mk_add {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} (a c : M) (b d : S) :
theorem localization.mk_mul {M : Type u_1} [comm_monoid M] {S : submonoid M} (a c : M) (b d : S) :
theorem localization.mk_one {M : Type u_1} [comm_monoid M] {S : submonoid M} :
theorem localization.mk_pow {M : Type u_1} [comm_monoid M] {S : submonoid M} (n : ) (a : M) (b : S) :
localization.mk a b ^ n = localization.mk (a ^ n) (b ^ n)
theorem add_localization.mk_nsmul {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} (n : ) (a : M) (b : S) :
@[simp]
theorem add_localization.rec_mk {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : add_localization S Sort u} (f : Π (a : M) (b : S), p (add_localization.mk a b)) (H : {a c : M} {b d : S} (h : (add_localization.r S) (a, b) (c, d)), eq.rec (f a b) _ = f c d) (a : M) (b : S) :
@[simp]
theorem localization.rec_mk {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : localization S Sort u} (f : Π (a : M) (b : S), p (localization.mk a b)) (H : {a c : M} {b d : S} (h : (localization.r S) (a, b) (c, d)), eq.rec (f a b) _ = f c d) (a : M) (b : S) :
def add_localization.lift_on {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : Sort u} (x : add_localization S) (f : M S p) (H : {a c : M} {b d : S}, (add_localization.r S) (a, b) (c, d) f a b = f c d) :
p

Non-dependent recursion principle for add_localizations: given elements f a b : p for all a b, such that r S (a, b) (c, d) implies f a b = f c d, then f is defined on the whole localization S.

Equations
def localization.lift_on {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : Sort u} (x : localization S) (f : M S p) (H : {a c : M} {b d : S}, (localization.r S) (a, b) (c, d) f a b = f c d) :
p

Non-dependent recursion principle for localizations: given elements f a b : p for all a b, such that r S (a, b) (c, d) implies f a b = f c d, then f is defined on the whole localization S.

Equations
theorem localization.lift_on_mk {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : Sort u} (f : M S p) (H : {a c : M} {b d : S}, (localization.r S) (a, b) (c, d) f a b = f c d) (a : M) (b : S) :
(localization.mk a b).lift_on f H = f a b
theorem add_localization.lift_on_mk {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : Sort u} (f : M S p) (H : {a c : M} {b d : S}, (add_localization.r S) (a, b) (c, d) f a b = f c d) (a : M) (b : S) :
(add_localization.mk a b).lift_on f H = f a b
theorem add_localization.ind {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : add_localization S Prop} (H : (y : M × S), p (add_localization.mk y.fst y.snd)) (x : add_localization S) :
p x
theorem localization.ind {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : localization S Prop} (H : (y : M × S), p (localization.mk y.fst y.snd)) (x : localization S) :
p x
theorem localization.induction_on {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : localization S Prop} (x : localization S) (H : (y : M × S), p (localization.mk y.fst y.snd)) :
p x
theorem add_localization.induction_on {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : add_localization S Prop} (x : add_localization S) (H : (y : M × S), p (add_localization.mk y.fst y.snd)) :
p x
def add_localization.lift_on₂ {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : Sort u} (x y : add_localization S) (f : M S M S p) (H : {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (add_localization.r S) (a, b) (a', b') (add_localization.r S) (c, d) (c', d') f a b c d = f a' b' c' d') :
p

Non-dependent recursion principle for localizations: given elements f x y : p for all x and y, such that r S x x' and r S y y' implies f x y = f x' y', then f is defined on the whole localization S.

Equations
def localization.lift_on₂ {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : Sort u} (x y : localization S) (f : M S M S p) (H : {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (localization.r S) (a, b) (a', b') (localization.r S) (c, d) (c', d') f a b c d = f a' b' c' d') :
p

Non-dependent recursion principle for localizations: given elements f x y : p for all x and y, such that r S x x' and r S y y' implies f x y = f x' y', then f is defined on the whole localization S.

Equations
theorem localization.lift_on₂_mk {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : Sort u_2} (f : M S M S p) (H : {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (localization.r S) (a, b) (a', b') (localization.r S) (c, d) (c', d') f a b c d = f a' b' c' d') (a c : M) (b d : S) :
(localization.mk a b).lift_on₂ (localization.mk c d) f H = f a b c d
theorem add_localization.lift_on₂_mk {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : Sort u_2} (f : M S M S p) (H : {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (add_localization.r S) (a, b) (a', b') (add_localization.r S) (c, d) (c', d') f a b c d = f a' b' c' d') (a c : M) (b d : S) :
theorem localization.induction_on₂ {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : localization S localization S Prop} (x y : localization S) (H : (x y : M × S), p (localization.mk x.fst x.snd) (localization.mk y.fst y.snd)) :
p x y
theorem localization.induction_on₃ {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : localization S localization S localization S Prop} (x y z : localization S) (H : (x y z : M × S), p (localization.mk x.fst x.snd) (localization.mk y.fst y.snd) (localization.mk z.fst z.snd)) :
p x y z
theorem localization.one_rel {M : Type u_1} [comm_monoid M] {S : submonoid M} (y : S) :
theorem add_localization.zero_rel {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} (y : S) :
theorem localization.r_of_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {x y : M × S} (h : (y.snd) * x.fst = (x.snd) * y.fst) :
theorem add_localization.r_of_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {x y : M × S} (h : (y.snd) + x.fst = (x.snd) + y.fst) :
theorem localization.mk_self {M : Type u_1} [comm_monoid M] {S : submonoid M} (a : S) :
@[protected, irreducible]
def localization.smul {M : Type u_1} [comm_monoid M] {S : submonoid M} {R : Type u_4} [has_smul R M] [is_scalar_tower R M M] (c : R) (z : localization S) :

Scalar multiplication in a monoid localization is defined as c • ⟨a, b⟩ = ⟨c • a, b⟩.

Equations
@[protected, instance]
def localization.has_smul {M : Type u_1} [comm_monoid M] {S : submonoid M} {R : Type u_4} [has_smul R M] [is_scalar_tower R M M] :
Equations
theorem localization.smul_mk {M : Type u_1} [comm_monoid M] {S : submonoid M} {R : Type u_4} [has_smul R M] [is_scalar_tower R M M] (c : R) (a : M) (b : S) :
@[protected, instance]
def localization.smul_comm_class {M : Type u_1} [comm_monoid M] {S : submonoid M} {R₁ : Type u_5} {R₂ : Type u_6} [has_smul R₁ M] [has_smul R₂ M] [is_scalar_tower R₁ M M] [is_scalar_tower R₂ M M] [smul_comm_class R₁ R₂ M] :
@[protected, instance]
def localization.is_scalar_tower {M : Type u_1} [comm_monoid M] {S : submonoid M} {R₁ : Type u_5} {R₂ : Type u_6} [has_smul R₁ M] [has_smul R₂ M] [is_scalar_tower R₁ M M] [is_scalar_tower R₂ M M] [has_smul R₁ R₂] [is_scalar_tower R₁ R₂ M] :
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
def localization.mul_action {M : Type u_1} [comm_monoid M] {S : submonoid M} {R : Type u_4} [monoid R] [mul_action R M] [is_scalar_tower R M M] :
Equations
def add_monoid_hom.to_localization_map {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : M →+ N) (H1 : (y : S), is_add_unit (f y)) (H2 : (z : N), (x : M × S), z + f (x.snd) = f x.fst) (H3 : (x y : M), f x = f y (c : S), c + x = c + y) :

Makes a localization map from an add_comm_monoid hom satisfying the characteristic predicate.

Equations
def monoid_hom.to_localization_map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : M →* N) (H1 : (y : S), is_unit (f y)) (H2 : (z : N), (x : M × S), z * f (x.snd) = f x.fst) (H3 : (x y : M), f x = f y (c : S), c * x = c * y) :

Makes a localization map from a comm_monoid hom satisfying the characteristic predicate.

Equations
@[reducible]

Short for to_add_monoid_hom; used to apply a localization map as a function.

@[reducible]
def submonoid.localization_map.to_map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) :
M →* N

Short for to_monoid_hom; used to apply a localization map as a function.

@[ext]
theorem add_submonoid.localization_map.ext {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f g : S.localization_map N} (h : (x : M), (f.to_map) x = (g.to_map) x) :
f = g
@[ext]
theorem submonoid.localization_map.ext {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f g : S.localization_map N} (h : (x : M), (f.to_map) x = (g.to_map) x) :
f = g
theorem submonoid.localization_map.ext_iff {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f g : S.localization_map N} :
f = g (x : M), (f.to_map) x = (g.to_map) x
theorem add_submonoid.localization_map.ext_iff {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f g : S.localization_map N} :
f = g (x : M), (f.to_map) x = (g.to_map) x
theorem submonoid.localization_map.map_units {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (y : S) :
theorem submonoid.localization_map.surj {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (z : N) :
(x : M × S), z * (f.to_map) (x.snd) = (f.to_map) x.fst
theorem add_submonoid.localization_map.surj {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (z : N) :
(x : M × S), z + (f.to_map) (x.snd) = (f.to_map) x.fst
theorem submonoid.localization_map.eq_iff_exists {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x y : M} :
(f.to_map) x = (f.to_map) y (c : S), c * x = c * y
theorem add_submonoid.localization_map.eq_iff_exists {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x y : M} :
(f.to_map) x = (f.to_map) y (c : S), c + x = c + y
noncomputable def submonoid.localization_map.sec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (z : N) :
M × S

Given a localization map f : M →* N, a section function sending z : N to some (x, y) : M × S such that f x * (f y)⁻¹ = z.

Equations
noncomputable def add_submonoid.localization_map.sec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (z : N) :
M × S

Given a localization map f : M →+ N, a section function sending z : N to some (x, y) : M × S such that f x - f y = z.

Equations
theorem submonoid.localization_map.sec_spec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : S.localization_map N} (z : N) :
z * (f.to_map) ((f.sec z).snd) = (f.to_map) (f.sec z).fst
theorem add_submonoid.localization_map.sec_spec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : S.localization_map N} (z : N) :
z + (f.to_map) ((f.sec z).snd) = (f.to_map) (f.sec z).fst
theorem submonoid.localization_map.sec_spec' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : S.localization_map N} (z : N) :
(f.to_map) (f.sec z).fst = (f.to_map) ((f.sec z).snd) * z
theorem add_submonoid.localization_map.sec_spec' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : S.localization_map N} (z : N) :
(f.to_map) (f.sec z).fst = (f.to_map) ((f.sec z).snd) + z
theorem add_submonoid.localization_map.add_neg_left {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : M →+ N} (h : (y : S), is_add_unit (f y)) (y : S) (w z : N) :

Given an add_monoid hom f : M →+ N and submonoid S ⊆ M such that f(S) ⊆ add_units N, for all w : M, z : N and y ∈ S, we have w - f y = z ↔ w = f y + z.

theorem submonoid.localization_map.mul_inv_left {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : M →* N} (h : (y : S), is_unit (f y)) (y : S) (w z : N) :

Given a monoid hom f : M →* N and submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all w : M, z : N and y ∈ S, we have w * (f y)⁻¹ = z ↔ w = f y * z.

theorem submonoid.localization_map.mul_inv_right {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : M →* N} (h : (y : S), is_unit (f y)) (y : S) (w z : N) :

Given a monoid hom f : M →* N and submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all w : M, z : N and y ∈ S, we have z = w * (f y)⁻¹ ↔ z * f y = w.

theorem add_submonoid.localization_map.add_neg_right {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : M →+ N} (h : (y : S), is_add_unit (f y)) (y : S) (w z : N) :

Given an add_monoid hom f : M →+ N and submonoid S ⊆ M such that f(S) ⊆ add_units N, for all w : M, z : N and y ∈ S, we have z = w - f y ↔ z + f y = w.

@[simp]
theorem add_submonoid.localization_map.add_neg {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : M →+ N} (h : (y : S), is_add_unit (f y)) {x₁ x₂ : M} {y₁ y₂ : S} :
f x₁ + -(is_add_unit.lift_right (f.restrict S) h) y₁ = f x₂ + -(is_add_unit.lift_right (f.restrict S) h) y₂ f (x₁ + y₂) = f (x₂ + y₁)

Given an add_monoid hom f : M →+ N and submonoid S ⊆ M such that f(S) ⊆ add_units N, for all x₁ x₂ : M and y₁, y₂ ∈ S, we have f x₁ - f y₁ = f x₂ - f y₂ ↔ f (x₁ + y₂) = f (x₂ + y₁).

@[simp]
theorem submonoid.localization_map.mul_inv {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : M →* N} (h : (y : S), is_unit (f y)) {x₁ x₂ : M} {y₁ y₂ : S} :
f x₁ * ((is_unit.lift_right (f.restrict S) h) y₁)⁻¹ = f x₂ * ((is_unit.lift_right (f.restrict S) h) y₂)⁻¹ f (x₁ * y₂) = f (x₂ * y₁)

Given a monoid hom f : M →* N and submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all x₁ x₂ : M and y₁, y₂ ∈ S, we have f x₁ * (f y₁)⁻¹ = f x₂ * (f y₂)⁻¹ ↔ f (x₁ * y₂) = f (x₂ * y₁).

theorem add_submonoid.localization_map.neg_inj {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : M →+ N} (hf : (y : S), is_add_unit (f y)) {y z : S} (h : -(is_add_unit.lift_right (f.restrict S) hf) y = -(is_add_unit.lift_right (f.restrict S) hf) z) :

Given an add_monoid hom f : M →+ N and submonoid S ⊆ M such that f(S) ⊆ add_units N, for all y, z ∈ S, we have - (f y) = - (f z) → f y = f z.

theorem submonoid.localization_map.inv_inj {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : M →* N} (hf : (y : S), is_unit (f y)) {y z : S} (h : ((is_unit.lift_right (f.restrict S) hf) y)⁻¹ = ((is_unit.lift_right (f.restrict S) hf) z)⁻¹) :

Given a monoid hom f : M →* N and submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all y, z ∈ S, we have (f y)⁻¹ = (f z)⁻¹ → f y = f z.

theorem add_submonoid.localization_map.neg_unique {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {f : M →+ N} (h : (y : S), is_add_unit (f y)) {y : S} {z : N} (H : f y + z = 0) :

Given an add_monoid hom f : M →+ N and submonoid S ⊆ M such that f(S) ⊆ add_units N, for all y ∈ S, - (f y) is unique.

theorem submonoid.localization_map.inv_unique {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {f : M →* N} (h : (y : S), is_unit (f y)) {y : S} {z : N} (H : f y * z = 1) :

Given a monoid hom f : M →* N and submonoid S ⊆ M such that f(S) ⊆ Nˣ, for all y ∈ S, (f y)⁻¹ is unique.

theorem submonoid.localization_map.map_right_cancel {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x y : M} {c : S} (h : (f.to_map) (c * x) = (f.to_map) (c * y)) :
(f.to_map) x = (f.to_map) y
theorem add_submonoid.localization_map.map_right_cancel {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x y : M} {c : S} (h : (f.to_map) (c + x) = (f.to_map) (c + y)) :
(f.to_map) x = (f.to_map) y
theorem submonoid.localization_map.map_left_cancel {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x y : M} {c : S} (h : (f.to_map) (x * c) = (f.to_map) (y * c)) :
(f.to_map) x = (f.to_map) y
theorem add_submonoid.localization_map.map_left_cancel {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x y : M} {c : S} (h : (f.to_map) (x + c) = (f.to_map) (y + c)) :
(f.to_map) x = (f.to_map) y
noncomputable def add_submonoid.localization_map.mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
N

Given a localization map f : M →+ N, the surjection sending (x, y) : M × S to f x - f y.

Equations
noncomputable def submonoid.localization_map.mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
N

Given a localization map f : M →* N, the surjection sending (x, y) : M × S to f x * (f y)⁻¹.

Equations
theorem submonoid.localization_map.mk'_mul {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x₁ x₂ : M) (y₁ y₂ : S) :
f.mk' (x₁ * x₂) (y₁ * y₂) = f.mk' x₁ y₁ * f.mk' x₂ y₂
theorem add_submonoid.localization_map.mk'_add {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x₁ x₂ : M) (y₁ y₂ : S) :
f.mk' (x₁ + x₂) (y₁ + y₂) = f.mk' x₁ y₁ + f.mk' x₂ y₂
theorem add_submonoid.localization_map.mk'_zero {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) :
f.mk' x 0 = (f.to_map) x
theorem submonoid.localization_map.mk'_one {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) :
f.mk' x 1 = (f.to_map) x
@[simp]
theorem add_submonoid.localization_map.mk'_sec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (z : N) :
f.mk' (f.sec z).fst (f.sec z).snd = z

Given a localization map f : M →+ N for a submonoid S ⊆ M, for all z : N we have that if x : M, y ∈ S are such that z + f y = f x, then f x - f y = z.

@[simp]
theorem submonoid.localization_map.mk'_sec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (z : N) :
f.mk' (f.sec z).fst (f.sec z).snd = z

Given a localization map f : M →* N for a submonoid S ⊆ M, for all z : N we have that if x : M, y ∈ S are such that z * f y = f x, then f x * (f y)⁻¹ = z.

theorem submonoid.localization_map.mk'_surjective {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (z : N) :
(x : M) (y : S), f.mk' x y = z
theorem add_submonoid.localization_map.mk'_surjective {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (z : N) :
(x : M) (y : S), f.mk' x y = z
theorem add_submonoid.localization_map.mk'_spec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
f.mk' x y + (f.to_map) y = (f.to_map) x
theorem submonoid.localization_map.mk'_spec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
f.mk' x y * (f.to_map) y = (f.to_map) x
theorem submonoid.localization_map.mk'_spec' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
(f.to_map) y * f.mk' x y = (f.to_map) x
theorem add_submonoid.localization_map.mk'_spec' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
(f.to_map) y + f.mk' x y = (f.to_map) x
theorem add_submonoid.localization_map.eq_mk'_iff_add_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x : M} {y : S} {z : N} :
z = f.mk' x y z + (f.to_map) y = (f.to_map) x
theorem submonoid.localization_map.eq_mk'_iff_mul_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x : M} {y : S} {z : N} :
z = f.mk' x y z * (f.to_map) y = (f.to_map) x
theorem add_submonoid.localization_map.mk'_eq_iff_eq_add {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x : M} {y : S} {z : N} :
f.mk' x y = z (f.to_map) x = z + (f.to_map) y
theorem submonoid.localization_map.mk'_eq_iff_eq_mul {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x : M} {y : S} {z : N} :
f.mk' x y = z (f.to_map) x = z * (f.to_map) y
theorem submonoid.localization_map.mk'_eq_iff_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x₁ x₂ : M} {y₁ y₂ : S} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ (f.to_map) (y₂ * x₁) = (f.to_map) (y₁ * x₂)
theorem add_submonoid.localization_map.mk'_eq_iff_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x₁ x₂ : M} {y₁ y₂ : S} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ (f.to_map) (y₂ + x₁) = (f.to_map) (y₁ + x₂)
theorem submonoid.localization_map.mk'_eq_iff_eq' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {x₁ x₂ : M} {y₁ y₂ : S} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ (f.to_map) (x₁ * y₂) = (f.to_map) (x₂ * y₁)
theorem add_submonoid.localization_map.mk'_eq_iff_eq' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {x₁ x₂ : M} {y₁ y₂ : S} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ (f.to_map) (x₁ + y₂) = (f.to_map) (x₂ + y₁)
@[protected]
theorem submonoid.localization_map.eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} :
f.mk' a₁ a₂ = f.mk' b₁ b₂ (c : S), c * (b₂ * a₁) = c * (a₂ * b₁)
@[protected]
theorem add_submonoid.localization_map.eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} :
f.mk' a₁ a₂ = f.mk' b₁ b₂ (c : S), c + (b₂ + a₁) = c + (a₂ + b₁)
@[protected]
theorem add_submonoid.localization_map.eq' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} :
f.mk' a₁ a₂ = f.mk' b₁ b₂ (add_localization.r S) (a₁, a₂) (b₁, b₂)
@[protected]
theorem submonoid.localization_map.eq' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} :
f.mk' a₁ a₂ = f.mk' b₁ b₂ (localization.r S) (a₁, a₂) (b₁, b₂)
theorem submonoid.localization_map.eq_iff_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) (g : S.localization_map P) {x y : M} :
(f.to_map) x = (f.to_map) y (g.to_map) x = (g.to_map) y
theorem add_submonoid.localization_map.eq_iff_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) (g : S.localization_map P) {x y : M} :
(f.to_map) x = (f.to_map) y (g.to_map) x = (g.to_map) y
theorem submonoid.localization_map.mk'_eq_iff_mk'_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) (g : S.localization_map P) {x₁ x₂ : M} {y₁ y₂ : S} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ g.mk' x₁ y₁ = g.mk' x₂ y₂
theorem add_submonoid.localization_map.mk'_eq_iff_mk'_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) (g : S.localization_map P) {x₁ x₂ : M} {y₁ y₂ : S} :
f.mk' x₁ y₁ = f.mk' x₂ y₂ g.mk' x₁ y₁ = g.mk' x₂ y₂
theorem add_submonoid.localization_map.exists_of_sec_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
(c : S), c + (((f.sec (f.mk' x y)).snd) + x) = c + (y + (f.sec (f.mk' x y)).fst)

Given a localization map f : M →+ N for a submonoid S ⊆ M, for all x₁ : M and y₁ ∈ S, if x₂ : M, y₂ ∈ S are such that (f x₁ - f y₁) + f y₂ = f x₂, then there exists c ∈ S such that x₁ + y₂ + c = x₂ + y₁ + c.

theorem submonoid.localization_map.exists_of_sec_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
(c : S), c * (((f.sec (f.mk' x y)).snd) * x) = c * (y * (f.sec (f.mk' x y)).fst)

Given a localization map f : M →* N for a submonoid S ⊆ M, for all x₁ : M and y₁ ∈ S, if x₂ : M, y₂ ∈ S are such that f x₁ * (f y₁)⁻¹ * f y₂ = f x₂, then there exists c ∈ S such that x₁ * y₂ * c = x₂ * y₁ * c.

theorem add_submonoid.localization_map.mk'_eq_of_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} (H : a₂ + b₁ = b₂ + a₁) :
f.mk' a₁ a₂ = f.mk' b₁ b₂
theorem submonoid.localization_map.mk'_eq_of_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} (H : a₂ * b₁ = b₂ * a₁) :
f.mk' a₁ a₂ = f.mk' b₁ b₂
theorem submonoid.localization_map.mk'_eq_of_eq' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} (H : b₁ * a₂ = a₁ * b₂) :
f.mk' a₁ a₂ = f.mk' b₁ b₂
theorem add_submonoid.localization_map.mk'_eq_of_eq' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) {a₁ b₁ : M} {a₂ b₂ : S} (H : b₁ + a₂ = a₁ + b₂) :
f.mk' a₁ a₂ = f.mk' b₁ b₂
@[simp]
theorem add_submonoid.localization_map.mk'_self' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (y : S) :
f.mk' y y = 0
@[simp]
theorem submonoid.localization_map.mk'_self' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (y : S) :
f.mk' y y = 1
@[simp]
theorem add_submonoid.localization_map.mk'_self {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (H : x S) :
f.mk' x x, H⟩ = 0
@[simp]
theorem submonoid.localization_map.mk'_self {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (H : x S) :
f.mk' x x, H⟩ = 1
theorem submonoid.localization_map.mul_mk'_eq_mk'_of_mul {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x₁ x₂ : M) (y : S) :
(f.to_map) x₁ * f.mk' x₂ y = f.mk' (x₁ * x₂) y
theorem add_submonoid.localization_map.add_mk'_eq_mk'_of_add {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x₁ x₂ : M) (y : S) :
(f.to_map) x₁ + f.mk' x₂ y = f.mk' (x₁ + x₂) y
theorem add_submonoid.localization_map.mk'_add_eq_mk'_of_add {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x₁ x₂ : M) (y : S) :
f.mk' x₂ y + (f.to_map) x₁ = f.mk' (x₁ + x₂) y
theorem submonoid.localization_map.mk'_mul_eq_mk'_of_mul {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x₁ x₂ : M) (y : S) :
f.mk' x₂ y * (f.to_map) x₁ = f.mk' (x₁ * x₂) y
theorem add_submonoid.localization_map.add_mk'_zero_eq_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
(f.to_map) x + f.mk' 0 y = f.mk' x y
theorem submonoid.localization_map.mul_mk'_one_eq_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
(f.to_map) x * f.mk' 1 y = f.mk' x y
@[simp]
theorem submonoid.localization_map.mk'_mul_cancel_right {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
f.mk' (x * y) y = (f.to_map) x
@[simp]
theorem add_submonoid.localization_map.mk'_add_cancel_right {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
f.mk' (x + y) y = (f.to_map) x
theorem add_submonoid.localization_map.mk'_add_cancel_left {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
f.mk' (y + x) y = (f.to_map) x
theorem submonoid.localization_map.mk'_mul_cancel_left {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : M) (y : S) :
f.mk' (y * x) y = (f.to_map) x
theorem submonoid.localization_map.is_unit_comp {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) (j : N →* P) (y : S) :
theorem submonoid.localization_map.eq_of_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) {x y : M} (h : (f.to_map) x = (f.to_map) y) :
g x = g y

Given a localization map f : M →* N for a submonoid S ⊆ M and a map of comm_monoids g : M →* P such that g(S) ⊆ units P, f x = f y → g x = g y for all x y : M.

theorem add_submonoid.localization_map.eq_of_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) {x y : M} (h : (f.to_map) x = (f.to_map) y) :
g x = g y

Given a localization map f : M →+ N for a submonoid S ⊆ M and a map of add_comm_monoids g : M →+ P such that g(S) ⊆ add_units P, f x = f y → g x = g y for all x y : M.

theorem submonoid.localization_map.comp_eq_of_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} {Q : Type u_4} [comm_monoid Q] (hg : (y : S), g y T) (k : T.localization_map Q) {x y : M} (h : (f.to_map) x = (f.to_map) y) :
(k.to_map) (g x) = (k.to_map) (g y)

Given comm_monoids M, P, localization maps f : M →* N, k : P →* Q for submonoids S, T respectively, and g : M →* P such that g(S) ⊆ T, f x = f y implies k (g x) = k (g y).

theorem add_submonoid.localization_map.comp_eq_of_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} {Q : Type u_4} [add_comm_monoid Q] (hg : (y : S), g y T) (k : T.localization_map Q) {x y : M} (h : (f.to_map) x = (f.to_map) y) :
(k.to_map) (g x) = (k.to_map) (g y)

Given add_comm_monoids M, P, localization maps f : M →+ N, k : P →+ Q for submonoids S, T respectively, and g : M →+ P such that g(S) ⊆ T, f x = f y implies k (g x) = k (g y).

noncomputable def submonoid.localization_map.lift {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) :
N →* P

Given a localization map f : M →* N for a submonoid S ⊆ M and a map of comm_monoids g : M →* P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

Equations
noncomputable def add_submonoid.localization_map.lift {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) :
N →+ P

Given a localization map f : M →+ N for a submonoid S ⊆ M and a map of add_comm_monoids g : M →+ P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x - g y, where (x, y) : M × S are such that z = f x - f y.

Equations
theorem submonoid.localization_map.lift_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (x : M) (y : S) :
(f.lift hg) (f.mk' x y) = g x * ((is_unit.lift_right (g.restrict S) hg) y)⁻¹

Given a localization map f : M →* N for a submonoid S ⊆ M and a map of comm_monoids g : M →* P such that g y is invertible for all y : S, the homomorphism induced from N to P maps f x * (f y)⁻¹ to g x * (g y)⁻¹ for all x : M, y ∈ S.

theorem add_submonoid.localization_map.lift_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (x : M) (y : S) :
(f.lift hg) (f.mk' x y) = g x + -(is_add_unit.lift_right (g.restrict S) hg) y

Given a localization map f : M →+ N for a submonoid S ⊆ M and a map of add_comm_monoids g : M →+ P such that g y is invertible for all y : S, the homomorphism induced from N to P maps f x - f y to g x - g y for all x : M, y ∈ S.

theorem submonoid.localization_map.lift_spec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (z : N) (v : P) :
(f.lift hg) z = v g (f.sec z).fst = g ((f.sec z).snd) * v

Given a localization map f : M →* N for a submonoid S ⊆ M, if a comm_monoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, v : P, we have f.lift hg z = v ↔ g x = g y * v, where x : M, y ∈ S are such that z * f y = f x.

theorem add_submonoid.localization_map.lift_spec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (z : N) (v : P) :
(f.lift hg) z = v g (f.sec z).fst = g ((f.sec z).snd) + v

Given a localization map f : M →+ N for a submonoid S ⊆ M, if an add_comm_monoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, v : P, we have f.lift hg z = v ↔ g x = g y + v, where x : M, y ∈ S are such that z + f y = f x.

theorem submonoid.localization_map.lift_spec_mul {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (z : N) (w v : P) :
(f.lift hg) z * w = v g (f.sec z).fst * w = g ((f.sec z).snd) * v

Given a localization map f : M →* N for a submonoid S ⊆ M, if a comm_monoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, v w : P, we have f.lift hg z * w = v ↔ g x * w = g y * v, where x : M, y ∈ S are such that z * f y = f x.

theorem add_submonoid.localization_map.lift_spec_add {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (z : N) (w v : P) :
(f.lift hg) z + w = v g (f.sec z).fst + w = g ((f.sec z).snd) + v

Given a localization map f : M →+ N for a submonoid S ⊆ M, if an add_comm_monoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, v w : P, we have f.lift hg z + w = v ↔ g x + w = g y + v, where x : M, y ∈ S are such that z + f y = f x.

theorem add_submonoid.localization_map.lift_mk'_spec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (x : M) (v : P) (y : S) :
(f.lift hg) (f.mk' x y) = v g x = g y + v
theorem submonoid.localization_map.lift_mk'_spec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (x : M) (v : P) (y : S) :
(f.lift hg) (f.mk' x y) = v g x = g y * v
theorem submonoid.localization_map.lift_mul_right {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (z : N) :
(f.lift hg) z * g ((f.sec z).snd) = g (f.sec z).fst

Given a localization map f : M →* N for a submonoid S ⊆ M, if a comm_monoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, we have f.lift hg z * g y = g x, where x : M, y ∈ S are such that z * f y = f x.

theorem add_submonoid.localization_map.lift_add_right {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (z : N) :
(f.lift hg) z + g ((f.sec z).snd) = g (f.sec z).fst

Given a localization map f : M →+ N for a submonoid S ⊆ M, if an add_comm_monoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, we have f.lift hg z + g y = g x, where x : M, y ∈ S are such that z + f y = f x.

theorem add_submonoid.localization_map.lift_add_left {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (z : N) :
g ((f.sec z).snd) + (f.lift hg) z = g (f.sec z).fst

Given a localization map f : M →+ N for a submonoid S ⊆ M, if an add_comm_monoid map g : M →+ P induces a map f.lift hg : N →+ P then for all z : N, we have g y + f.lift hg z = g x, where x : M, y ∈ S are such that z + f y = f x.

theorem submonoid.localization_map.lift_mul_left {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (z : N) :
g ((f.sec z).snd) * (f.lift hg) z = g (f.sec z).fst

Given a localization map f : M →* N for a submonoid S ⊆ M, if a comm_monoid map g : M →* P induces a map f.lift hg : N →* P then for all z : N, we have g y * f.lift hg z = g x, where x : M, y ∈ S are such that z * f y = f x.

@[simp]
theorem submonoid.localization_map.lift_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) (x : M) :
(f.lift hg) ((f.to_map) x) = g x
@[simp]
theorem add_submonoid.localization_map.lift_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) (x : M) :
(f.lift hg) ((f.to_map) x) = g x
theorem submonoid.localization_map.lift_eq_iff {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) {x y : M × S} :
(f.lift hg) (f.mk' x.fst x.snd) = (f.lift hg) (f.mk' y.fst y.snd) g (x.fst * (y.snd)) = g (y.fst * (x.snd))
theorem add_submonoid.localization_map.lift_eq_iff {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) {x y : M × S} :
(f.lift hg) (f.mk' x.fst x.snd) = (f.lift hg) (f.mk' y.fst y.snd) g (x.fst + (y.snd)) = g (y.fst + (x.snd))
@[simp]
theorem add_submonoid.localization_map.lift_comp {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) :
(f.lift hg).comp f.to_map = g
@[simp]
theorem submonoid.localization_map.lift_comp {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) :
(f.lift hg).comp f.to_map = g
@[simp]
theorem add_submonoid.localization_map.lift_of_comp {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) (j : N →+ P) :
f.lift _ = j
@[simp]
theorem submonoid.localization_map.lift_of_comp {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) (j : N →* P) :
f.lift _ = j
theorem submonoid.localization_map.epic_of_localization_map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {j k : N →* P} (h : (a : M), (j.comp f.to_map) a = (k.comp f.to_map) a) :
j = k
theorem add_submonoid.localization_map.epic_of_localization_map {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {j k : N →+ P} (h : (a : M), (j.comp f.to_map) a = (k.comp f.to_map) a) :
j = k
theorem add_submonoid.localization_map.lift_unique {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) {j : N →+ P} (hj : (x : M), j ((f.to_map) x) = g x) :
f.lift hg = j
theorem submonoid.localization_map.lift_unique {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) {j : N →* P} (hj : (x : M), j ((f.to_map) x) = g x) :
f.lift hg = j
@[simp]
theorem add_submonoid.localization_map.lift_id {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (x : N) :
(f.lift _) x = x
@[simp]
theorem submonoid.localization_map.lift_id {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (x : N) :
(f.lift _) x = x
@[simp]
theorem add_submonoid.localization_map.lift_left_inverse {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {k : S.localization_map P} (z : N) :
(k.lift _) ((f.lift _) z) = z

Given two localization maps f : M →+ N, k : M →+ P for a submonoid S ⊆ M, the hom from P to N induced by f is left inverse to the hom from N to P induced by k.

@[simp]
theorem submonoid.localization_map.lift_left_inverse {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {k : S.localization_map P} (z : N) :
(k.lift _) ((f.lift _) z) = z

Given two localization maps f : M →* N, k : M →* P for a submonoid S ⊆ M, the hom from P to N induced by f is left inverse to the hom from N to P induced by k.

theorem add_submonoid.localization_map.lift_surjective_iff {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) :
function.surjective (f.lift hg) (v : P), (x : M × S), v + g (x.snd) = g x.fst
theorem submonoid.localization_map.lift_surjective_iff {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) :
function.surjective (f.lift hg) (v : P), (x : M × S), v * g (x.snd) = g x.fst
theorem submonoid.localization_map.lift_injective_iff {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} (hg : (y : S), is_unit (g y)) :
function.injective (f.lift hg) (x y : M), (f.to_map) x = (f.to_map) y g x = g y
theorem add_submonoid.localization_map.lift_injective_iff {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} (hg : (y : S), is_add_unit (g y)) :
function.injective (f.lift hg) (x y : M), (f.to_map) x = (f.to_map) y g x = g y
noncomputable def add_submonoid.localization_map.map {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] (k : T.localization_map Q) :
N →+ Q

Given a add_comm_monoid homomorphism g : M →+ P where for submonoids S ⊆ M, T ⊆ P we have g(S) ⊆ T, the induced add_monoid homomorphism from the localization of M at S to the localization of P at T: if f : M →+ N and k : P →+ Q are localization maps for S and T respectively, we send z : N to k (g x) - k (g y), where (x, y) : M × S are such that z = f x - f y.

Equations
noncomputable def submonoid.localization_map.map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] (k : T.localization_map Q) :
N →* Q

Given a comm_monoid homomorphism g : M →* P where for submonoids S ⊆ M, T ⊆ P we have g(S) ⊆ T, the induced monoid homomorphism from the localization of M at S to the localization of P at T: if f : M →* N and k : P →* Q are localization maps for S and T respectively, we send z : N to k (g x) * (k (g y))⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

Equations
theorem submonoid.localization_map.map_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} (x : M) :
(f.map hy k) ((f.to_map) x) = (k.to_map) (g x)
theorem add_submonoid.localization_map.map_eq {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} (x : M) :
(f.map hy k) ((f.to_map) x) = (k.to_map) (g x)
@[simp]
theorem add_submonoid.localization_map.map_comp {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} :
(f.map hy k).comp f.to_map = k.to_map.comp g
@[simp]
theorem submonoid.localization_map.map_comp {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} :
(f.map hy k).comp f.to_map = k.to_map.comp g
theorem add_submonoid.localization_map.map_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} (x : M) (y : S) :
(f.map hy k) (f.mk' x y) = k.mk' (g x) g y, _⟩
theorem submonoid.localization_map.map_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} (x : M) (y : S) :
(f.map hy k) (f.mk' x y) = k.mk' (g x) g y, _⟩
theorem add_submonoid.localization_map.map_spec {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} (z : N) (u : Q) :
(f.map hy k) z = u (k.to_map) (g (f.sec z).fst) = (k.to_map) (g ((f.sec z).snd)) + u

Given localization maps f : M →+ N, k : P →+ Q for submonoids S, T respectively, if an add_comm_monoid homomorphism g : M →+ P induces a f.map hy k : N →+ Q, then for all z : N, u : Q, we have f.map hy k z = u ↔ k (g x) = k (g y) + u where x : M, y ∈ S are such that z + f y = f x.

theorem submonoid.localization_map.map_spec {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} (z : N) (u : Q) :
(f.map hy k) z = u (k.to_map) (g (f.sec z).fst) = (k.to_map) (g ((f.sec z).snd)) * u

Given localization maps f : M →* N, k : P →* Q for submonoids S, T respectively, if a comm_monoid homomorphism g : M →* P induces a f.map hy k : N →* Q, then for all z : N, u : Q, we have f.map hy k z = u ↔ k (g x) = k (g y) * u where x : M, y ∈ S are such that z * f y = f x.

theorem submonoid.localization_map.map_mul_right {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} (z : N) :
(f.map hy k) z * (k.to_map) (g ((f.sec z).snd)) = (k.to_map) (g (f.sec z).fst)

Given localization maps f : M →* N, k : P →* Q for submonoids S, T respectively, if a comm_monoid homomorphism g : M →* P induces a f.map hy k : N →* Q, then for all z : N, we have f.map hy k z * k (g y) = k (g x) where x : M, y ∈ S are such that z * f y = f x.

theorem add_submonoid.localization_map.map_add_right {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} (z : N) :
(f.map hy k) z + (k.to_map) (g ((f.sec z).snd)) = (k.to_map) (g (f.sec z).fst)

Given localization maps f : M →+ N, k : P →+ Q for submonoids S, T respectively, if an add_comm_monoid homomorphism g : M →+ P induces a f.map hy k : N →+ Q, then for all z : N, we have f.map hy k z + k (g y) = k (g x) where x : M, y ∈ S are such that z + f y = f x.

theorem add_submonoid.localization_map.map_add_left {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} (z : N) :
(k.to_map) (g ((f.sec z).snd)) + (f.map hy k) z = (k.to_map) (g (f.sec z).fst)

Given localization maps f : M →+ N, k : P →+ Q for submonoids S, T respectively, if an add_comm_monoid homomorphism g : M →+ P induces a f.map hy k : N →+ Q, then for all z : N, we have k (g y) + f.map hy k z = k (g x) where x : M, y ∈ S are such that z + f y = f x.

theorem submonoid.localization_map.map_mul_left {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} (z : N) :
(k.to_map) (g ((f.sec z).snd)) * (f.map hy k) z = (k.to_map) (g (f.sec z).fst)

Given localization maps f : M →* N, k : P →* Q for submonoids S, T respectively, if a comm_monoid homomorphism g : M →* P induces a f.map hy k : N →* Q, then for all z : N, we have k (g y) * f.map hy k z = k (g x) where x : M, y ∈ S are such that z * f y = f x.

@[simp]
theorem add_submonoid.localization_map.map_id {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] (f : S.localization_map N) (z : N) :
(f.map _ f) z = z
@[simp]
theorem submonoid.localization_map.map_id {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) (z : N) :
(f.map _ f) z = z
theorem add_submonoid.localization_map.map_comp_map {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} {A : Type u_5} [add_comm_monoid A] {U : add_submonoid A} {R : Type u_6} [add_comm_monoid R] (j : U.localization_map R) {l : P →+ A} (hl : (w : T), l w U) :
(k.map hl j).comp (f.map hy k) = f.map _ j

If add_comm_monoid homs g : M →+ P, l : P →+ A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

theorem submonoid.localization_map.map_comp_map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {A : Type u_5} [comm_monoid A] {U : submonoid A} {R : Type u_6} [comm_monoid R] (j : U.localization_map R) {l : P →* A} (hl : (w : T), l w U) :
(k.map hl j).comp (f.map hy k) = f.map _ j

If comm_monoid homs g : M →* P, l : P →* A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

theorem add_submonoid.localization_map.map_map {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {g : M →+ P} {T : add_submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} {A : Type u_5} [add_comm_monoid A] {U : add_submonoid A} {R : Type u_6} [add_comm_monoid R] (j : U.localization_map R) {l : P →+ A} (hl : (w : T), l w U) (x : N) :
(k.map hl j) ((f.map hy k) x) = (f.map _ j) x

If add_comm_monoid homs g : M →+ P, l : P →+ A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

theorem submonoid.localization_map.map_map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {g : M →* P} {T : submonoid P} (hy : (y : S), g y T) {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {A : Type u_5} [comm_monoid A] {U : submonoid A} {R : Type u_6} [comm_monoid R] (j : U.localization_map R) {l : P →* A} (hl : (w : T), l w U) (x : N) :
(k.map hl j) ((f.map hy k) x) = (f.map _ j) x

If comm_monoid homs g : M →* P, l : P →* A induce maps of localizations, the composition of the induced maps equals the map of localizations induced by l ∘ g.

@[reducible]
def submonoid.localization_map.away_map {M : Type u_1} [comm_monoid M] (x : M) (N' : Type u_2) [comm_monoid N'] :
Type (max u_1 u_2)

Given x : M, the type of comm_monoid homomorphisms f : M →* N such that N is isomorphic to the localization of M at the submonoid generated by x.

Equations
@[reducible]
def add_submonoid.localization_map.away_map {M : Type u_1} [add_comm_monoid M] (x : M) (N' : Type u_2) [add_comm_monoid N'] :
Type (max u_1 u_2)

Given x : M, the type of add_comm_monoid homomorphisms f : M →+ N such that N is isomorphic to the localization of M at the submonoid generated by x.

Equations
noncomputable def submonoid.localization_map.away_map.inv_self {M : Type u_1} [comm_monoid M] {N : Type u_2} [comm_monoid N] (x : M) (F : submonoid.localization_map.away_map x N) :
N

Given x : M and a localization map F : M →* N away from x, inv_self is (F x)⁻¹.

Equations
noncomputable def submonoid.localization_map.away_map.lift {M : Type u_1} [comm_monoid M] {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] {g : M →* P} (x : M) (F : submonoid.localization_map.away_map x N) (hg : is_unit (g x)) :
N →* P

Given x : M, a localization map F : M →* N away from x, and a map of comm_monoids g : M →* P such that g x is invertible, the homomorphism induced from N to P sending z : N to g y * (g x)⁻ⁿ, where y : M, n : ℕ are such that z = F y * (F x)⁻ⁿ.

Equations
noncomputable def submonoid.localization_map.away_to_away_right {M : Type u_1} [comm_monoid M] {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (x : M) (F : submonoid.localization_map.away_map x N) (y : M) (G : submonoid.localization_map.away_map (x * y) P) :
N →* P

Given x y : M and localization maps F : M →* N, G : M →* P away from x and x * y respectively, the homomorphism induced from N to P.

Equations

Given x : A and a localization map F : A →+ B away from x, neg_self is - (F x).

Equations
noncomputable def add_submonoid.localization_map.away_map.lift {A : Type u_4} [add_comm_monoid A] (x : A) {B : Type u_5} [add_comm_monoid B] (F : add_submonoid.localization_map.away_map x B) {C : Type u_6} [add_comm_monoid C] {g : A →+ C} (hg : is_add_unit (g x)) :
B →+ C

Given x : A, a localization map F : A →+ B away from x, and a map of add_comm_monoids g : A →+ C such that g x is invertible, the homomorphism induced from B to C sending z : B to g y - n • g x, where y : A, n : ℕ are such that z = F y - n • F x.

Equations

Given x y : A and localization maps F : A →+ B, G : A →+ C away from x and x + y respectively, the homomorphism induced from B to C.

Equations

If f : M →+ N and k : M →+ R are localization maps for a submonoid S, we get an isomorphism of N and R.

Equations
noncomputable def submonoid.localization_map.mul_equiv_of_localizations {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) (k : S.localization_map P) :
N ≃* P

If f : M →* N and k : M →* P are localization maps for a submonoid S, we get an isomorphism of N and P.

Equations
@[simp]

If f : M →+ N is a localization map for a submonoid S and k : N ≃+ P is an isomorphism of add_comm_monoids, k ∘ f is a localization map for M at S.

Equations

If f : M →* N is a localization map for a submonoid S and k : N ≃* P is an isomorphism of comm_monoids, k ∘ f is a localization map for M at S.

Equations
@[simp]
theorem submonoid.localization_map.of_mul_equiv_of_localizations_eq_iff_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {k : N ≃* P} {x : M} {y : P} :

Given comm_monoids M, P and submonoids S ⊆ M, T ⊆ P, if f : M →* N is a localization map for S and k : P ≃* M is an isomorphism of comm_monoids such that k(T) = S, f ∘ k is a localization map for T.

Equations
def submonoid.localization_map.of_mul_equiv_of_dom {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {k : P ≃* M} (H : submonoid.map k.to_monoid_hom T = S) :

Given comm_monoids M, P and submonoids S ⊆ M, T ⊆ P, if f : M →* N is a localization map for S and k : P ≃* M is an isomorphism of comm_monoids such that k(T) = S, f ∘ k is a localization map for T.

Equations
@[simp]
theorem submonoid.localization_map.of_mul_equiv_of_dom_apply {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {k : P ≃* M} (H : submonoid.map k.to_monoid_hom T = S) (x : P) :
theorem submonoid.localization_map.of_mul_equiv_of_dom_comp_symm {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {k : P ≃* M} (H : submonoid.map k.to_monoid_hom T = S) (x : M) :
theorem submonoid.localization_map.of_mul_equiv_of_dom_comp {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {k : M ≃* P} (H : submonoid.map k.symm.to_monoid_hom T = S) (x : M) :
@[simp]

A special case of f ∘ id = f, f a localization map.

@[simp]

A special case of f ∘ id = f, f a localization map.

noncomputable def submonoid.localization_map.mul_equiv_of_mul_equiv {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {Q : Type u_4} [comm_monoid Q] (k : T.localization_map Q) {j : M ≃* P} (H : submonoid.map j.to_monoid_hom S = T) :
N ≃* Q

Given localization maps f : M →* N, k : P →* U for submonoids S, T respectively, an isomorphism j : M ≃* P such that j(S) = T induces an isomorphism of localizations N ≃* U.

Equations
noncomputable def add_submonoid.localization_map.add_equiv_of_add_equiv {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {T : add_submonoid P} {Q : Type u_4} [add_comm_monoid Q] (k : T.localization_map Q) {j : M ≃+ P} (H : add_submonoid.map j.to_add_monoid_hom S = T) :
N ≃+ Q

Given localization maps f : M →+ N, k : P →+ U for submonoids S, T respectively, an isomorphism j : M ≃+ P such that j(S) = T induces an isomorphism of localizations N ≃+ U.

Equations
@[simp]
theorem submonoid.localization_map.mul_equiv_of_mul_equiv_eq_map_apply {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {j : M ≃* P} (H : submonoid.map j.to_monoid_hom S = T) (x : N) :
(f.mul_equiv_of_mul_equiv k H) x = (f.map _ k) x
theorem submonoid.localization_map.mul_equiv_of_mul_equiv_eq_map {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {j : M ≃* P} (H : submonoid.map j.to_monoid_hom S = T) :
@[simp]
@[simp]
theorem submonoid.localization_map.mul_equiv_of_mul_equiv_eq {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {j : M ≃* P} (H : submonoid.map j.to_monoid_hom S = T) (x : M) :
@[simp]
theorem add_submonoid.localization_map.add_equiv_of_add_equiv_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {N : Type u_2} [add_comm_monoid N] {P : Type u_3} [add_comm_monoid P] (f : S.localization_map N) {T : add_submonoid P} {Q : Type u_4} [add_comm_monoid Q] {k : T.localization_map Q} {j : M ≃+ P} (H : add_submonoid.map j.to_add_monoid_hom S = T) (x : M) (y : S) :
(f.add_equiv_of_add_equiv k H) (f.mk' x y) = k.mk' (j x) j y, _⟩
@[simp]
theorem submonoid.localization_map.mul_equiv_of_mul_equiv_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {j : M ≃* P} (H : submonoid.map j.to_monoid_hom S = T) (x : M) (y : S) :
(f.mul_equiv_of_mul_equiv k H) (f.mk' x y) = k.mk' (j x) j y, _⟩
@[simp]
theorem submonoid.localization_map.of_mul_equiv_of_mul_equiv_apply {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] {P : Type u_3} [comm_monoid P] (f : S.localization_map N) {T : submonoid P} {Q : Type u_4} [comm_monoid Q] {k : T.localization_map Q} {j : M ≃* P} (H : submonoid.map j.to_monoid_hom S = T) (x : M) :

Natural hom sending x : M, M a comm_monoid, to the equivalence class of (x, 1) in the localization of M at a submonoid.

Equations

Natural homomorphism sending x : M, M an add_comm_monoid, to the equivalence class of (x, 0) in the localization of M at a submonoid.

Equations
@[simp]
theorem localization.lift_on_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : Sort u} (f : M S p) (H : {a c : M} {b d : S}, (localization.r S) (a, b) (c, d) f a b = f c d) (a : M) (b : S) :
((localization.monoid_of S).mk' a b).lift_on f H = f a b
@[simp]
theorem add_localization.lift_on_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : Sort u} (f : M S p) (H : {a c : M} {b d : S}, (add_localization.r S) (a, b) (c, d) f a b = f c d) (a : M) (b : S) :
@[simp]
theorem localization.lift_on₂_mk' {M : Type u_1} [comm_monoid M] {S : submonoid M} {p : Sort u_2} (f : M S M S p) (H : {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (localization.r S) (a, b) (a', b') (localization.r S) (c, d) (c', d') f a b c d = f a' b' c' d') (a c : M) (b d : S) :
@[simp]
theorem add_localization.lift_on₂_mk' {M : Type u_1} [add_comm_monoid M] {S : add_submonoid M} {p : Sort u_2} (f : M S M S p) (H : {a a' : M} {b b' : S} {c c' : M} {d d' : S}, (add_localization.r S) (a, b) (a', b') (add_localization.r S) (c, d) (c', d') f a b c d = f a' b' c' d') (a c : M) (b d : S) :

Given a localization map f : M →+ N for a submonoid S, we get an isomorphism between the localization of M at S as a quotient type and N.

Equations
noncomputable def localization.mul_equiv_of_quotient {M : Type u_1} [comm_monoid M] {S : submonoid M} {N : Type u_2} [comm_monoid N] (f : S.localization_map N) :

Given a localization map f : M →* N for a submonoid S, we get an isomorphism between the localization of M at S as a quotient type and N.

Equations
@[simp]
@[simp]
@[reducible]
def add_localization.away {M : Type u_1} [add_comm_monoid M] (x : M) :
Type u_1

Given x : M, the localization of M at the submonoid generated by x, as a quotient.

Equations
@[reducible]
def localization.away {M : Type u_1} [comm_monoid M] (x : M) :
Type u_1

Given x : M, the localization of M at the submonoid generated by x, as a quotient.

Equations

Given x : M, inv_self is x⁻¹ in the localization (as a quotient type) of M at the submonoid generated by x.

Equations

Given x : M, neg_self is -x in the localization (as a quotient type) of M at the submonoid generated by x.

Equations
@[reducible]

Given x : M, the natural hom sending y : M, M a comm_monoid, to the equivalence class of (y, 1) in the localization of M at the submonoid generated by x.

Equations
@[reducible]

Given x : M, the natural hom sending y : M, M an add_comm_monoid, to the equivalence class of (y, 0) in the localization of M at the submonoid generated by x.

Equations

Given x : M and a localization map f : M →* N away from x, we get an isomorphism between the localization of M at the submonoid generated by x as a quotient type and N.

Equations

Given x : M and a localization map f : M →+ N away from x, we get an isomorphism between the localization of M at the submonoid generated by x as a quotient type and N.

Equations
@[nolint]
structure submonoid.localization_with_zero_map {M : Type u_1} [comm_monoid_with_zero M] (S : submonoid M) (N : Type u_2) [comm_monoid_with_zero N] :
Type (max u_1 u_2)

The type of homomorphisms between monoids with zero satisfying the characteristic predicate: if f : M →*₀ N satisfies this predicate, then N is isomorphic to the localization of M at S.

Instances for submonoid.localization_with_zero_map
  • submonoid.localization_with_zero_map.has_sizeof_inst

The monoid with zero hom underlying a localization_map.

Equations
@[protected, irreducible]

The zero element in a localization is defined as (0, 1).

Should not be confused with add_localization.zero which is (0, 0).

Equations
@[protected, instance]
Equations
theorem localization.mk_zero {M : Type u_1} [comm_monoid_with_zero M] {S : submonoid M} (x : S) :
theorem localization.lift_on_zero {M : Type u_1} [comm_monoid_with_zero M] {S : submonoid M} {p : Type u_2} (f : M S p) (H : {a c : M} {b d : S}, (localization.r S) (a, b) (c, d) f a b = f c d) :
0.lift_on f H = f 0 1
noncomputable def submonoid.localization_with_zero_map.lift {M : Type u_1} [comm_monoid_with_zero M] {S : submonoid M} {N : Type u_2} [comm_monoid_with_zero N] {P : Type u_3} [comm_monoid_with_zero P] (f : S.localization_with_zero_map N) (g : M →*₀ P) (hg : (y : S), is_unit (g y)) :

Given a localization map f : M →*₀ N for a submonoid S ⊆ M and a map of comm_monoid_with_zeros g : M →*₀ P such that g y is invertible for all y : S, the homomorphism induced from N to P sending z : N to g x * (g y)⁻¹, where (x, y) : M × S are such that z = f x * (f y)⁻¹.

Equations
theorem localization.mk_left_injective {α : Type u_1} [cancel_comm_monoid α] {s : submonoid α} (b : s) :
theorem localization.mk_eq_mk_iff' {α : Type u_1} [cancel_comm_monoid α] {s : submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
localization.mk a₁ a₂ = localization.mk b₁ b₂ b₂ * a₁ = a₂ * b₁
theorem add_localization.mk_eq_mk_iff' {α : Type u_1} [add_cancel_comm_monoid α] {s : add_submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
add_localization.mk a₁ a₂ = add_localization.mk b₁ b₂ b₂ + a₁ = a₂ + b₁
@[protected, instance]
Equations
@[protected, instance]
Equations

Order #

@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
theorem localization.mk_le_mk {α : Type u_1} [ordered_cancel_comm_monoid α] {s : submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
localization.mk a₁ a₂ localization.mk b₁ b₂ b₂ * a₁ a₂ * b₁
theorem add_localization.mk_le_mk {α : Type u_1} [ordered_cancel_add_comm_monoid α] {s : add_submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
add_localization.mk a₁ a₂ add_localization.mk b₁ b₂ b₂ + a₁ a₂ + b₁
theorem add_localization.mk_lt_mk {α : Type u_1} [ordered_cancel_add_comm_monoid α] {s : add_submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
add_localization.mk a₁ a₂ < add_localization.mk b₁ b₂ b₂ + a₁ < a₂ + b₁
theorem localization.mk_lt_mk {α : Type u_1} [ordered_cancel_comm_monoid α] {s : submonoid α} {a₁ b₁ : α} {a₂ b₂ : s} :
localization.mk a₁ a₂ < localization.mk b₁ b₂ b₂ * a₁ < a₂ * b₁
@[protected, instance]
Equations
@[protected, instance]
Equations

An ordered cancellative monoid injects into its localization by sending a to a / b.

Equations

An ordered cancellative monoid injects into its localization by sending a to a - b.

Equations
@[protected, instance]
Equations
@[protected, instance]
Equations