Factoring through subobjects #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The predicate h : P.factors f
, for P : subobject Y
and f : X ⟶ Y
asserts the existence of some P.factor_thru f : X ⟶ (P : C)
making the obvious diagram commute.
When f : X ⟶ Y
and P : mono_over Y
,
P.factors f
expresses that there exists a factorisation of f
through P
.
Given h : P.factors f
, you can recover the morphism as P.factor_thru f h
.
P.factor_thru f h
provides a factorisation of f : X ⟶ Y
through some P : mono_over Y
,
given the evidence h : P.factors f
that such a factorisation exists.
Equations
- P.factor_thru f h = classical.some h
When f : X ⟶ Y
and P : subobject Y
,
P.factors f
expresses that there exists a factorisation of f
through P
.
Given h : P.factors f
, you can recover the morphism as P.factor_thru f h
.
Equations
- P.factors f = quotient.lift_on' P (λ (P : category_theory.mono_over Y), P.factors f) _
P.factor_thru f h
provides a factorisation of f : X ⟶ Y
through some P : subobject Y
,
given the evidence h : P.factors f
that such a factorisation exists.
Equations
- P.factor_thru f h = classical.some _