Contractible spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we define contractible_space
, a space that is homotopy equivalent to unit
.
def
continuous_map.nullhomotopic
{X : Type u_1}
{Y : Type u_2}
[topological_space X]
[topological_space Y]
(f : C(X, Y)) :
Prop
A map is nullhomotopic if it is homotopic to a constant map.
Equations
- f.nullhomotopic = ∃ (y : Y), f.homotopic (continuous_map.const X y)
theorem
continuous_map.nullhomotopic_of_constant
{X : Type u_1}
{Y : Type u_2}
[topological_space X]
[topological_space Y]
(y : Y) :
theorem
continuous_map.nullhomotopic.comp_right
{X : Type u_1}
{Y : Type u_2}
{Z : Type u_3}
[topological_space X]
[topological_space Y]
[topological_space Z]
{f : C(X, Y)}
(hf : f.nullhomotopic)
(g : C(Y, Z)) :
(g.comp f).nullhomotopic
theorem
continuous_map.nullhomotopic.comp_left
{X : Type u_1}
{Y : Type u_2}
{Z : Type u_3}
[topological_space X]
[topological_space Y]
[topological_space Z]
{f : C(Y, Z)}
(hf : f.nullhomotopic)
(g : C(X, Y)) :
(f.comp g).nullhomotopic
@[class]
- hequiv_unit : nonempty (continuous_map.homotopy_equiv X unit)
A contractible space is one that is homotopy equivalent to unit
.
Instances of this typeclass
@[protected]
theorem
continuous_map.homotopy_equiv.contractible_space
{X : Type u_1}
{Y : Type u_2}
[topological_space X]
[topological_space Y]
[contractible_space Y]
(e : continuous_map.homotopy_equiv X Y) :
@[protected]
theorem
continuous_map.homotopy_equiv.contractible_space_iff
{X : Type u_1}
{Y : Type u_2}
[topological_space X]
[topological_space Y]
(e : continuous_map.homotopy_equiv X Y) :
@[protected]
theorem
homeomorph.contractible_space
{X : Type u_1}
{Y : Type u_2}
[topological_space X]
[topological_space Y]
[contractible_space Y]
(e : X ≃ₜ Y) :
@[protected]
theorem
homeomorph.contractible_space_iff
{X : Type u_1}
{Y : Type u_2}
[topological_space X]
[topological_space Y]
(e : X ≃ₜ Y) :
@[protected, instance]
def
contractible_space.path_connected_space
{X : Type u_1}
[topological_space X]
[contractible_space X] :