Intervals of finsets as finsets #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file provides the locally_finite_order
instance for finset α
and calculates the cardinality
of finite intervals of finsets.
If s t : finset α
, then finset.Icc s t
is the finset of finsets which include s
and are
included in t
. For example,
finset.Icc {0, 1} {0, 1, 2, 3} = {{0, 1}, {0, 1, 2}, {0, 1, 3}, {0, 1, 2, 3}}
and
finset.Icc {0, 1, 2} {0, 1, 3} = {}
.
@[protected, instance]
Equations
- finset.locally_finite_order = {finset_Icc := λ (s t : finset α), finset.filter (has_subset.subset s) t.powerset, finset_Ico := λ (s t : finset α), finset.filter (has_subset.subset s) t.ssubsets, finset_Ioc := λ (s t : finset α), finset.filter (has_ssubset.ssubset s) t.powerset, finset_Ioo := λ (s t : finset α), finset.filter (has_ssubset.ssubset s) t.ssubsets, finset_mem_Icc := _, finset_mem_Ico := _, finset_mem_Ioc := _, finset_mem_Ioo := _}
theorem
finset.Icc_eq_filter_powerset
{α : Type u_1}
[decidable_eq α]
(s t : finset α) :
finset.Icc s t = finset.filter (has_subset.subset s) t.powerset
theorem
finset.Ico_eq_filter_ssubsets
{α : Type u_1}
[decidable_eq α]
(s t : finset α) :
finset.Ico s t = finset.filter (has_subset.subset s) t.ssubsets
theorem
finset.Ioc_eq_filter_powerset
{α : Type u_1}
[decidable_eq α]
(s t : finset α) :
finset.Ioc s t = finset.filter (has_ssubset.ssubset s) t.powerset
theorem
finset.Ioo_eq_filter_ssubsets
{α : Type u_1}
[decidable_eq α]
(s t : finset α) :
finset.Ioo s t = finset.filter (has_ssubset.ssubset s) t.ssubsets
theorem
finset.Iic_eq_powerset
{α : Type u_1}
[decidable_eq α]
(s : finset α) :
finset.Iic s = s.powerset
theorem
finset.Iio_eq_ssubsets
{α : Type u_1}
[decidable_eq α]
(s : finset α) :
finset.Iio s = s.ssubsets
theorem
finset.Icc_eq_image_powerset
{α : Type u_1}
[decidable_eq α]
{s t : finset α}
(h : s ⊆ t) :
finset.Icc s t = finset.image (has_union.union s) (t \ s).powerset
theorem
finset.Ico_eq_image_ssubsets
{α : Type u_1}
[decidable_eq α]
{s t : finset α}
(h : s ⊆ t) :
finset.Ico s t = finset.image (has_union.union s) (t \ s).ssubsets
Cardinality of a non-empty Icc
of finsets.
Cardinality of an Ico
of finsets.
Cardinality of an Ioc
of finsets.
Cardinality of an Ioo
of finsets.
theorem
finset.card_Iic_finset
{α : Type u_1}
[decidable_eq α]
{s : finset α} :
(finset.Iic s).card = 2 ^ s.card
Cardinality of an Iic
of finsets.
Cardinality of an Iio
of finsets.