Set family operations #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines a few binary operations on set α for use in set family combinatorics.
Main declarations #
s ⊻ t: Set of elements of the forma ⊔ bwherea ∈ s,b ∈ t.s ⊼ t: Set of elements of the forma ⊓ bwherea ∈ s,b ∈ t.
Notation #
We define the following notation in locale set_family:
s ⊻ ts ⊼ t
References #
@[protected]
s ⊻ t is the set of elements of the form a ⊔ b where a ∈ s, b ∈ t.
Equations
@[simp]
@[simp]
@[simp]
theorem
set.image_sup_prod
{α : Type u_1}
[semilattice_sup α]
(s t : set α) :
function.uncurry has_sup.sup '' s ×ˢ t = s ⊻ t
@[protected]
s ⊼ t is the set of elements of the form a ⊓ b where a ∈ s, b ∈ t.
Equations
@[simp]
@[simp]
@[simp]
theorem
set.image_inf_prod
{α : Type u_1}
[semilattice_inf α]
(s t : set α) :
function.uncurry has_inf.inf '' s ×ˢ t = s ⊼ t
@[simp]
theorem
upper_closure_sups
{α : Type u_1}
[semilattice_sup α]
(s t : set α) :
upper_closure (s ⊻ t) = upper_closure s ⊔ upper_closure t
@[simp]
theorem
lower_closure_infs
{α : Type u_1}
[semilattice_inf α]
(s t : set α) :
lower_closure (s ⊼ t) = lower_closure s ⊓ lower_closure t