mathlib3 documentation

order.category.Semilat

The categories of semilattices #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

This defines SemilatSup and SemilatInf, the categories of sup-semilattices with a bottom element and inf-semilattices with a top element.

References #

structure SemilatSup  :
Type (u+1)

The category of sup-semilattices with a bottom element.

Instances for SemilatSup
structure SemilatInf  :
Type (u+1)

The category of inf-semilattices with a top element.

Instances for SemilatInf
def SemilatSup.of (α : Type u_1) [semilattice_sup α] [order_bot α] :

Construct a bundled SemilatSup from a semilattice_sup.

Equations
@[simp]
theorem SemilatSup.coe_of (α : Type u_1) [semilattice_sup α] [order_bot α] :
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
def SemilatInf.of (α : Type u_1) [semilattice_inf α] [order_top α] :

Construct a bundled SemilatInf from a semilattice_inf.

Equations
@[simp]
theorem SemilatInf.coe_of (α : Type u_1) [semilattice_inf α] [order_top α] :
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations

Order dual #

def SemilatSup.iso.mk {α β : SemilatSup} (e : α ≃o β) :
α β

Constructs an isomorphism of lattices from an order isomorphism between them.

Equations
@[simp]
theorem SemilatSup.iso.mk_hom {α β : SemilatSup} (e : α ≃o β) :
@[simp]
theorem SemilatSup.iso.mk_inv {α β : SemilatSup} (e : α ≃o β) :

order_dual as a functor.

Equations
def SemilatInf.iso.mk {α β : SemilatInf} (e : α ≃o β) :
α β

Constructs an isomorphism of lattices from an order isomorphism between them.

Equations
@[simp]
theorem SemilatInf.iso.mk_hom {α β : SemilatInf} (e : α ≃o β) :
@[simp]
theorem SemilatInf.iso.mk_inv {α β : SemilatInf} (e : α ≃o β) :

order_dual as a functor.

Equations