mathlib3 documentation

geometry.manifold.cont_mdiff

Smooth functions between smooth manifolds #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We define Cⁿ functions between smooth manifolds, as functions which are Cⁿ in charts, and prove basic properties of these notions.

Main definitions and statements #

Let M and M' be two smooth manifolds, with respect to model with corners I and I'. Let f : M → M'.

We also give many basic properties of smooth functions between manifolds, following the API of smooth functions between vector spaces.

Implementation details #

Many properties follow for free from the corresponding properties of functions in vector spaces, as being Cⁿ is a local property invariant under the smooth groupoid. We take advantage of the general machinery developed in local_invariant_properties.lean to get these properties automatically. For instance, the fact that being Cⁿ does not depend on the chart one considers is given by lift_prop_within_at_indep_chart.

For this to work, the definition of cont_mdiff_within_at and friends has to follow definitionally the setup of local invariant properties. Still, we recast the definition in terms of extended charts in cont_mdiff_on_iff and cont_mdiff_iff.

Definition of smooth functions between manifolds #

def cont_diff_within_at_prop {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') (n : ℕ∞) (f : H H') (s : set H) (x : H) :
Prop

Property in the model space of a model with corners of being C^n within at set at a point, when read in the model vector space. This property will be lifted to manifolds to define smooth functions between manifolds.

Equations
theorem cont_diff_within_at_prop_self_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {n : ℕ∞} {f : E H'} {s : set E} {x : E} :
theorem cont_diff_within_at_prop_self {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} {x : E} :
theorem cont_diff_within_at_prop_self_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : H E'} {s : set H} {x : H} :

Being Cⁿ in the model space is a local property, invariant under smooth maps. Therefore, it will lift nicely to manifolds.

theorem cont_diff_within_at_prop_mono_of_mem {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') (n : ℕ∞) ⦃s : set H⦄ ⦃x : H⦄ ⦃t : set H⦄ ⦃f : H H'⦄ (hts : s nhds_within x t) (h : cont_diff_within_at_prop I I' n f s x) :
theorem cont_diff_within_at_prop_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {n : ℕ∞} (x : H) :
def cont_mdiff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (n : ℕ∞) (f : M M') (s : set M) (x : M) :
Prop

A function is n times continuously differentiable within a set at a point in a manifold if it is continuous and it is n times continuously differentiable in this set around this point, when read in the preferred chart at this point.

Equations
@[reducible]
def smooth_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (f : M M') (s : set M) (x : M) :
Prop

Abbreviation for cont_mdiff_within_at I I' ⊤ f s x. See also documentation for smooth.

Equations
def cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (n : ℕ∞) (f : M M') (x : M) :
Prop

A function is n times continuously differentiable at a point in a manifold if it is continuous and it is n times continuously differentiable around this point, when read in the preferred chart at this point.

Equations
theorem cont_mdiff_at_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] {n : ℕ∞} {f : M M'} {x : M} :
@[reducible]
def smooth_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (f : M M') (x : M) :
Prop

Abbreviation for cont_mdiff_at I I' ⊤ f x. See also documentation for smooth.

Equations
def cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (n : ℕ∞) (f : M M') (s : set M) :
Prop

A function is n times continuously differentiable in a set of a manifold if it is continuous and, for any pair of points, it is n times continuously differentiable on this set in the charts around these points.

Equations
@[reducible]
def smooth_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (f : M M') (s : set M) :
Prop

Abbreviation for cont_mdiff_on I I' ⊤ f s. See also documentation for smooth.

Equations
def cont_mdiff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (n : ℕ∞) (f : M M') :
Prop

A function is n times continuously differentiable in a manifold if it is continuous and, for any pair of points, it is n times continuously differentiable in the charts around these points.

Equations
@[reducible]
def smooth {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] (I : model_with_corners 𝕜 E H) {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] (I' : model_with_corners 𝕜 E' H') {M' : Type u_7} [topological_space M'] [charted_space H' M'] (f : M M') :
Prop

Abbreviation for cont_mdiff I I' ⊤ f. Short note to work with these abbreviations: a lemma of the form cont_mdiff_foo.bar will apply fine to an assumption smooth_foo using dot notation or normal notation. If the consequence bar of the lemma involves cont_diff, it is still better to restate the lemma replacing cont_diff with smooth both in the assumption and in the conclusion, to make it possible to use smooth consistently. This also applies to smooth_at, smooth_on and smooth_within_at.

Equations

Basic properties of smooth functions between manifolds #

theorem cont_mdiff.smooth {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} (h : cont_mdiff I I' f) :
smooth I I' f
theorem smooth.cont_mdiff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} (h : smooth I I' f) :
theorem cont_mdiff_on.smooth_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} (h : cont_mdiff_on I I' f s) :
smooth_on I I' f s
theorem smooth_on.cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} (h : smooth_on I I' f s) :
theorem cont_mdiff_at.smooth_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} (h : cont_mdiff_at I I' f x) :
smooth_at I I' f x
theorem smooth_at.cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} (h : smooth_at I I' f x) :
theorem cont_mdiff_within_at.smooth_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} (h : cont_mdiff_within_at I I' f s x) :
smooth_within_at I I' f s x
theorem smooth_within_at.cont_mdiff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} (h : smooth_within_at I I' f s x) :
theorem cont_mdiff.cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} {n : ℕ∞} (h : cont_mdiff I I' n f) :
cont_mdiff_at I I' n f x
theorem smooth.smooth_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} (h : smooth I I' f) :
smooth_at I I' f x
theorem cont_mdiff_within_at_univ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} {n : ℕ∞} :
theorem smooth_within_at_univ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} :
theorem cont_mdiff_on_univ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {n : ℕ∞} :
theorem smooth_on_univ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} :
theorem cont_mdiff_within_at_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} :

One can reformulate smoothness within a set at a point as continuity within this set at this point, and smoothness in the corresponding extended chart.

theorem cont_mdiff_within_at_iff' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} :

One can reformulate smoothness within a set at a point as continuity within this set at this point, and smoothness in the corresponding extended chart. This form states smoothness of f written in such a way that the set is restricted to lie within the domain/codomain of the corresponding charts. Even though this expression is more complicated than the one in cont_mdiff_within_at_iff, it is a smaller set, but their germs at ext_chart_at I x x are equal. It is sometimes useful to rewrite using this in the goal.

theorem cont_mdiff_within_at_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} :

One can reformulate smoothness within a set at a point as continuity within this set at this point, and smoothness in the corresponding extended chart in the target.

theorem smooth_within_at_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} :
theorem smooth_within_at_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} :
theorem cont_mdiff_at_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {n : ℕ∞} {x : M} :
theorem smooth_at_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} :
theorem cont_mdiff_within_at_iff_of_mem_maximal_atlas {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {e : local_homeomorph M H} {e' : local_homeomorph M' H'} {f : M M'} {s : set M} {n : ℕ∞} {x : M} (he : e smooth_manifold_with_corners.maximal_atlas I M) (he' : e' smooth_manifold_with_corners.maximal_atlas I' M') (hx : x e.to_local_equiv.source) (hy : f x e'.to_local_equiv.source) :
theorem cont_mdiff_within_at_iff_image {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {e : local_homeomorph M H} {e' : local_homeomorph M' H'} {f : M M'} {s : set M} {n : ℕ∞} {x : M} (he : e smooth_manifold_with_corners.maximal_atlas I M) (he' : e' smooth_manifold_with_corners.maximal_atlas I' M') (hs : s e.to_local_equiv.source) (hx : x e.to_local_equiv.source) (hy : f x e'.to_local_equiv.source) :
cont_mdiff_within_at I I' n f s x continuous_within_at f s x cont_diff_within_at 𝕜 n ((e'.extend I') f ((e.extend I).symm)) ((e.extend I) '' s) ((e.extend I) x)

An alternative formulation of cont_mdiff_within_at_iff_of_mem_maximal_atlas if the set if s lies in e.source.

theorem cont_mdiff_within_at_iff_of_mem_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} {x' : M} {y : M'} (hx : x' (charted_space.chart_at H x).to_local_equiv.source) (hy : f x' (charted_space.chart_at H' y).to_local_equiv.source) :

One can reformulate smoothness within a set at a point as continuity within this set at this point, and smoothness in any chart containing that point.

theorem cont_mdiff_within_at_iff_of_mem_source' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} {x' : M} {y : M'} (hx : x' (charted_space.chart_at H x).to_local_equiv.source) (hy : f x' (charted_space.chart_at H' y).to_local_equiv.source) :
theorem cont_mdiff_at_iff_of_mem_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {x : M} {n : ℕ∞} {x' : M} {y : M'} (hx : x' (charted_space.chart_at H x).to_local_equiv.source) (hy : f x' (charted_space.chart_at H' y).to_local_equiv.source) :
theorem cont_mdiff_within_at_iff_target_of_mem_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {n : ℕ∞} {x : M} {y : M'} (hy : f x (charted_space.chart_at H' y).to_local_equiv.source) :
theorem cont_mdiff_at_iff_target_of_mem_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {n : ℕ∞} {x : M} {y : M'} (hy : f x (charted_space.chart_at H' y).to_local_equiv.source) :
theorem cont_mdiff_within_at_iff_source_of_mem_maximal_atlas {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {e : local_homeomorph M H} {f : M M'} {s : set M} {x : M} {n : ℕ∞} (he : e smooth_manifold_with_corners.maximal_atlas I M) (hx : x e.to_local_equiv.source) :
theorem cont_mdiff_within_at_iff_source_of_mem_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} {x' : M} (hx' : x' (charted_space.chart_at H x).to_local_equiv.source) :
theorem cont_mdiff_at_iff_source_of_mem_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} {n : ℕ∞} {x' : M} (hx' : x' (charted_space.chart_at H x).to_local_equiv.source) :
theorem cont_mdiff_on_iff_of_mem_maximal_atlas {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {e : local_homeomorph M H} {e' : local_homeomorph M' H'} {f : M M'} {s : set M} {n : ℕ∞} (he : e smooth_manifold_with_corners.maximal_atlas I M) (he' : e' smooth_manifold_with_corners.maximal_atlas I' M') (hs : s e.to_local_equiv.source) (h2s : set.maps_to f s e'.to_local_equiv.source) :
cont_mdiff_on I I' n f s continuous_on f s cont_diff_on 𝕜 n ((e'.extend I') f ((e.extend I).symm)) ((e.extend I) '' s)
theorem cont_mdiff_on_iff_of_subset_source {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {n : ℕ∞} {x : M} {y : M'} (hs : s (charted_space.chart_at H x).to_local_equiv.source) (h2s : set.maps_to f s (charted_space.chart_at H' y).to_local_equiv.source) :

If the set where you want f to be smooth lies entirely in a single chart, and f maps it into a single chart, the smoothness of f on that set can be expressed by purely looking in these charts. Note: this lemma uses ext_chart_at I x '' s instead of (ext_chart_at I x).symm ⁻¹' s to ensure that this set lies in (ext_chart_at I x).target.

theorem cont_mdiff_on_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {n : ℕ∞} :
cont_mdiff_on I I' n f s continuous_on f s (x : M) (y : M'), cont_diff_on 𝕜 n ((ext_chart_at I' y) f ((ext_chart_at I x).symm)) ((ext_chart_at I x).target ((ext_chart_at I x).symm) ⁻¹' (s f ⁻¹' (ext_chart_at I' y).source))

One can reformulate smoothness on a set as continuity on this set, and smoothness in any extended chart.

theorem cont_mdiff_on_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {n : ℕ∞} :

One can reformulate smoothness on a set as continuity on this set, and smoothness in any extended chart in the target.

theorem smooth_on_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} :
theorem smooth_on_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} :
theorem cont_mdiff_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {n : ℕ∞} :
cont_mdiff I I' n f continuous f (x : M) (y : M'), cont_diff_on 𝕜 n ((ext_chart_at I' y) f ((ext_chart_at I x).symm)) ((ext_chart_at I x).target ((ext_chart_at I x).symm) ⁻¹' (f ⁻¹' (ext_chart_at I' y).source))

One can reformulate smoothness as continuity and smoothness in any extended chart.

theorem cont_mdiff_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {n : ℕ∞} :

One can reformulate smoothness as continuity and smoothness in any extended chart in the target.

theorem smooth_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} :
theorem smooth_iff_target {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} :

Deducing smoothness from higher smoothness #

theorem cont_mdiff_within_at.of_le {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {m n : ℕ∞} (hf : cont_mdiff_within_at I I' n f s x) (le : m n) :
theorem cont_mdiff_at.of_le {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} {m n : ℕ∞} (hf : cont_mdiff_at I I' n f x) (le : m n) :
cont_mdiff_at I I' m f x
theorem cont_mdiff_on.of_le {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {m n : ℕ∞} (hf : cont_mdiff_on I I' n f s) (le : m n) :
cont_mdiff_on I I' m f s
theorem cont_mdiff.of_le {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {m n : ℕ∞} (hf : cont_mdiff I I' n f) (le : m n) :
cont_mdiff I I' m f

Deducing smoothness from smoothness one step beyond #

theorem cont_mdiff_within_at.of_succ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : } (h : cont_mdiff_within_at I I' (n.succ) f s x) :
theorem cont_mdiff_at.of_succ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} {n : } (h : cont_mdiff_at I I' (n.succ) f x) :
cont_mdiff_at I I' n f x
theorem cont_mdiff_on.of_succ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {n : } (h : cont_mdiff_on I I' (n.succ) f s) :
cont_mdiff_on I I' n f s
theorem cont_mdiff.of_succ {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {n : } (h : cont_mdiff I I' (n.succ) f) :
cont_mdiff I I' n f

Deducing continuity from smoothness #

theorem cont_mdiff_within_at.continuous_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} (hf : cont_mdiff_within_at I I' n f s x) :
theorem cont_mdiff_at.continuous_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} {n : ℕ∞} (hf : cont_mdiff_at I I' n f x) :
theorem cont_mdiff_on.continuous_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {n : ℕ∞} (hf : cont_mdiff_on I I' n f s) :
theorem cont_mdiff.continuous {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {n : ℕ∞} (hf : cont_mdiff I I' n f) :

C^∞ smoothness #

theorem cont_mdiff_within_at_top {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} :
smooth_within_at I I' f s x (n : ), cont_mdiff_within_at I I' n f s x
theorem cont_mdiff_at_top {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {x : M} :
smooth_at I I' f x (n : ), cont_mdiff_at I I' n f x
theorem cont_mdiff_on_top {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} :
smooth_on I I' f s (n : ), cont_mdiff_on I I' n f s
theorem cont_mdiff_top {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} :
smooth I I' f (n : ), cont_mdiff I I' n f
theorem cont_mdiff_within_at_iff_nat {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} :
cont_mdiff_within_at I I' n f s x (m : ), m n cont_mdiff_within_at I I' m f s x

Restriction to a smaller set #

theorem cont_mdiff_within_at.mono_of_mem {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s t : set M} {x : M} {n : ℕ∞} (hf : cont_mdiff_within_at I I' n f s x) (hts : s nhds_within x t) :
theorem cont_mdiff_within_at.mono {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s t : set M} {x : M} {n : ℕ∞} (hf : cont_mdiff_within_at I I' n f s x) (hts : t s) :
theorem cont_mdiff_within_at_congr_nhds {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s t : set M} {x : M} {n : ℕ∞} (hst : nhds_within x s = nhds_within x t) :
theorem cont_mdiff_at.cont_mdiff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} (hf : cont_mdiff_at I I' n f x) :
theorem smooth_at.smooth_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} (hf : smooth_at I I' f x) :
smooth_within_at I I' f s x
theorem cont_mdiff_on.mono {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s t : set M} {n : ℕ∞} (hf : cont_mdiff_on I I' n f s) (hts : t s) :
cont_mdiff_on I I' n f t
theorem cont_mdiff.cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {n : ℕ∞} (hf : cont_mdiff I I' n f) :
cont_mdiff_on I I' n f s
theorem smooth.smooth_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} (hf : smooth I I' f) :
smooth_on I I' f s
theorem cont_mdiff_within_at_inter' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s t : set M} {x : M} {n : ℕ∞} (ht : t nhds_within x s) :
cont_mdiff_within_at I I' n f (s t) x cont_mdiff_within_at I I' n f s x
theorem cont_mdiff_within_at_inter {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s t : set M} {x : M} {n : ℕ∞} (ht : t nhds x) :
cont_mdiff_within_at I I' n f (s t) x cont_mdiff_within_at I I' n f s x
theorem cont_mdiff_within_at.cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} (h : cont_mdiff_within_at I I' n f s x) (ht : s nhds x) :
cont_mdiff_at I I' n f x
theorem smooth_within_at.smooth_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} (h : smooth_within_at I I' f s x) (ht : s nhds x) :
smooth_at I I' f x
theorem cont_mdiff_on.cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} (h : cont_mdiff_on I I' n f s) (hx : s nhds x) :
cont_mdiff_at I I' n f x
theorem smooth_on.smooth_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {x : M} (h : smooth_on I I' f s) (hx : s nhds x) :
smooth_at I I' f x
theorem cont_mdiff_on_iff_source_of_mem_maximal_atlas {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {e : local_homeomorph M H} {f : M M'} {s : set M} {n : ℕ∞} (he : e smooth_manifold_with_corners.maximal_atlas I M) (hs : s e.to_local_equiv.source) :
cont_mdiff_on I I' n f s cont_mdiff_on (model_with_corners_self 𝕜 E) I' n (f ((e.extend I).symm)) ((e.extend I) '' s)
theorem cont_mdiff_within_at_iff_cont_mdiff_on_nhds {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {s : set M} {x : M} {n : } :
cont_mdiff_within_at I I' n f s x (u : set M) (H_1 : u nhds_within x (has_insert.insert x s)), cont_mdiff_on I I' n f u

A function is C^n within a set at a point, for n : ℕ, if and only if it is C^n on a neighborhood of this point.

theorem cont_mdiff_at_iff_cont_mdiff_on_nhds {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {x : M} {n : } :
cont_mdiff_at I I' n f x (u : set M) (H_1 : u nhds x), cont_mdiff_on I I' n f u

A function is C^n at a point, for n : ℕ, if and only if it is C^n on a neighborhood of this point.

theorem cont_mdiff_at_iff_cont_mdiff_at_nhds {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] [Is : smooth_manifold_with_corners I M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [I's : smooth_manifold_with_corners I' M'] {f : M M'} {x : M} {n : } :
cont_mdiff_at I I' n f x ∀ᶠ (x' : M) in nhds x, cont_mdiff_at I I' n f x'

Note: This does not hold for n = ∞. f being C^∞ at x means that for every n, f is C^n on some neighborhood of x, but this neighborhood can depend on n.

Congruence lemmas #

theorem cont_mdiff_within_at.congr {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {s : set M} {x : M} {n : ℕ∞} (h : cont_mdiff_within_at I I' n f s x) (h₁ : (y : M), y s f₁ y = f y) (hx : f₁ x = f x) :
cont_mdiff_within_at I I' n f₁ s x
theorem cont_mdiff_within_at_congr {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {s : set M} {x : M} {n : ℕ∞} (h₁ : (y : M), y s f₁ y = f y) (hx : f₁ x = f x) :
cont_mdiff_within_at I I' n f₁ s x cont_mdiff_within_at I I' n f s x
theorem cont_mdiff_within_at.congr_of_eventually_eq {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {s : set M} {x : M} {n : ℕ∞} (h : cont_mdiff_within_at I I' n f s x) (h₁ : f₁ =ᶠ[nhds_within x s] f) (hx : f₁ x = f x) :
cont_mdiff_within_at I I' n f₁ s x
theorem filter.eventually_eq.cont_mdiff_within_at_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {s : set M} {x : M} {n : ℕ∞} (h₁ : f₁ =ᶠ[nhds_within x s] f) (hx : f₁ x = f x) :
cont_mdiff_within_at I I' n f₁ s x cont_mdiff_within_at I I' n f s x
theorem cont_mdiff_at.congr_of_eventually_eq {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {x : M} {n : ℕ∞} (h : cont_mdiff_at I I' n f x) (h₁ : f₁ =ᶠ[nhds x] f) :
cont_mdiff_at I I' n f₁ x
theorem filter.eventually_eq.cont_mdiff_at_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {x : M} {n : ℕ∞} (h₁ : f₁ =ᶠ[nhds x] f) :
cont_mdiff_at I I' n f₁ x cont_mdiff_at I I' n f x
theorem cont_mdiff_on.congr {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {s : set M} {n : ℕ∞} (h : cont_mdiff_on I I' n f s) (h₁ : (y : M), y s f₁ y = f y) :
cont_mdiff_on I I' n f₁ s
theorem cont_mdiff_on_congr {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f f₁ : M M'} {s : set M} {n : ℕ∞} (h₁ : (y : M), y s f₁ y = f y) :
cont_mdiff_on I I' n f₁ s cont_mdiff_on I I' n f s

Locality #

theorem cont_mdiff_on_of_locally_cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {s : set M} {n : ℕ∞} (h : (x : M), x s ( (u : set M), is_open u x u cont_mdiff_on I I' n f (s u))) :
cont_mdiff_on I I' n f s

Being C^n is a local property.

theorem cont_mdiff_of_locally_cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {f : M M'} {n : ℕ∞} (h : (x : M), (u : set M), is_open u x u cont_mdiff_on I I' n f u) :
cont_mdiff I I' n f

Smoothness of the composition of smooth functions between manifolds #

theorem cont_mdiff_within_at.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {n : ℕ∞} {t : set M'} {g : M' M''} (x : M) (hg : cont_mdiff_within_at I' I'' n g t (f x)) (hf : cont_mdiff_within_at I I' n f s x) (st : set.maps_to f s t) :
cont_mdiff_within_at I I'' n (g f) s x

The composition of C^n functions within domains at points is C^n.

theorem cont_mdiff_within_at.comp_of_eq {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {n : ℕ∞} {t : set M'} {g : M' M''} {x : M} {y : M'} (hg : cont_mdiff_within_at I' I'' n g t y) (hf : cont_mdiff_within_at I I' n f s x) (st : set.maps_to f s t) (hx : f x = y) :
cont_mdiff_within_at I I'' n (g f) s x

See note [comp_of_eq lemmas]

theorem smooth_within_at.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {t : set M'} {g : M' M''} (x : M) (hg : smooth_within_at I' I'' g t (f x)) (hf : smooth_within_at I I' f s x) (st : set.maps_to f s t) :
smooth_within_at I I'' (g f) s x

The composition of C^∞ functions within domains at points is C^∞.

theorem cont_mdiff_on.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {n : ℕ∞} {t : set M'} {g : M' M''} (hg : cont_mdiff_on I' I'' n g t) (hf : cont_mdiff_on I I' n f s) (st : s f ⁻¹' t) :
cont_mdiff_on I I'' n (g f) s

The composition of C^n functions on domains is C^n.

theorem smooth_on.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {t : set M'} {g : M' M''} (hg : smooth_on I' I'' g t) (hf : smooth_on I I' f s) (st : s f ⁻¹' t) :
smooth_on I I'' (g f) s

The composition of C^∞ functions on domains is C^∞.

theorem cont_mdiff_on.comp' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {n : ℕ∞} {t : set M'} {g : M' M''} (hg : cont_mdiff_on I' I'' n g t) (hf : cont_mdiff_on I I' n f s) :
cont_mdiff_on I I'' n (g f) (s f ⁻¹' t)

The composition of C^n functions on domains is C^n.

theorem smooth_on.comp' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {t : set M'} {g : M' M''} (hg : smooth_on I' I'' g t) (hf : smooth_on I I' f s) :
smooth_on I I'' (g f) (s f ⁻¹' t)

The composition of C^∞ functions is C^∞.

theorem cont_mdiff.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {n : ℕ∞} {g : M' M''} (hg : cont_mdiff I' I'' n g) (hf : cont_mdiff I I' n f) :
cont_mdiff I I'' n (g f)

The composition of C^n functions is C^n.

theorem smooth.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {g : M' M''} (hg : smooth I' I'' g) (hf : smooth I I' f) :
smooth I I'' (g f)

The composition of C^∞ functions is C^∞.

theorem cont_mdiff_within_at.comp' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {n : ℕ∞} {t : set M'} {g : M' M''} (x : M) (hg : cont_mdiff_within_at I' I'' n g t (f x)) (hf : cont_mdiff_within_at I I' n f s x) :
cont_mdiff_within_at I I'' n (g f) (s f ⁻¹' t) x

The composition of C^n functions within domains at points is C^n.

theorem smooth_within_at.comp' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {t : set M'} {g : M' M''} (x : M) (hg : smooth_within_at I' I'' g t (f x)) (hf : smooth_within_at I I' f s x) :
smooth_within_at I I'' (g f) (s f ⁻¹' t) x

The composition of C^∞ functions within domains at points is C^∞.

theorem cont_mdiff_at.comp_cont_mdiff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {n : ℕ∞} {g : M' M''} (x : M) (hg : cont_mdiff_at I' I'' n g (f x)) (hf : cont_mdiff_within_at I I' n f s x) :
cont_mdiff_within_at I I'' n (g f) s x

g ∘ f is C^n within s at x if g is C^n at f x and f is C^n within s at x.

theorem smooth_at.comp_smooth_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {s : set M} {g : M' M''} (x : M) (hg : smooth_at I' I'' g (f x)) (hf : smooth_within_at I I' f s x) :
smooth_within_at I I'' (g f) s x

g ∘ f is C^∞ within s at x if g is C^∞ at f x and f is C^∞ within s at x.

theorem cont_mdiff_at.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {n : ℕ∞} {g : M' M''} (x : M) (hg : cont_mdiff_at I' I'' n g (f x)) (hf : cont_mdiff_at I I' n f x) :
cont_mdiff_at I I'' n (g f) x

The composition of C^n functions at points is C^n.

theorem cont_mdiff_at.comp_of_eq {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {n : ℕ∞} {g : M' M''} {x : M} {y : M'} (hg : cont_mdiff_at I' I'' n g y) (hf : cont_mdiff_at I I' n f x) (hx : f x = y) :
cont_mdiff_at I I'' n (g f) x

See note [comp_of_eq lemmas]

theorem smooth_at.comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {g : M' M''} (x : M) (hg : smooth_at I' I'' g (f x)) (hf : smooth_at I I' f x) :
smooth_at I I'' (g f) x

The composition of C^∞ functions at points is C^∞.

theorem cont_mdiff.comp_cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {n : ℕ∞} {f : M M'} {g : M' M''} {s : set M} (hg : cont_mdiff I' I'' n g) (hf : cont_mdiff_on I I' n f s) :
cont_mdiff_on I I'' n (g f) s
theorem smooth.comp_smooth_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {g : M' M''} {s : set M} (hg : smooth I' I'' g) (hf : smooth_on I I' f s) :
smooth_on I I'' (g f) s
theorem cont_mdiff_on.comp_cont_mdiff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {n : ℕ∞} {t : set M'} {g : M' M''} (hg : cont_mdiff_on I' I'' n g t) (hf : cont_mdiff I I' n f) (ht : (x : M), f x t) :
cont_mdiff I I'' n (g f)
theorem smooth_on.comp_smooth {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {E'' : Type u_8} [normed_add_comm_group E''] [normed_space 𝕜 E''] {H'' : Type u_9} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M'' : Type u_10} [topological_space M''] [charted_space H'' M''] {f : M M'} {t : set M'} {g : M' M''} (hg : smooth_on I' I'' g t) (hf : smooth I I' f) (ht : (x : M), f x t) :
smooth I I'' (g f)

Atlas members are smooth #

theorem cont_mdiff_model {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {n : ℕ∞} :

An atlas member is C^n for any n.

The inverse of an atlas member is C^n for any n.

An element of cont_diff_groupoid ⊤ I is C^n for any n.

The identity is smooth #

theorem cont_mdiff_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {n : ℕ∞} :
theorem smooth_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] :
theorem cont_mdiff_on_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {n : ℕ∞} :
theorem smooth_on_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} :
theorem cont_mdiff_at_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {x : M} {n : ℕ∞} :
theorem smooth_at_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {x : M} :
theorem cont_mdiff_within_at_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {x : M} {n : ℕ∞} :
theorem smooth_within_at_id {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {x : M} :

Constants are smooth #

theorem cont_mdiff_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {n : ℕ∞} {c : M'} :
cont_mdiff I I' n (λ (x : M), c)
theorem cont_mdiff_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {n : ℕ∞} [has_zero M'] :
cont_mdiff I I' n 0
theorem cont_mdiff_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {n : ℕ∞} [has_one M'] :
cont_mdiff I I' n 1
theorem smooth_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {c : M'} :
smooth I I' (λ (x : M), c)
theorem smooth_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [has_one M'] :
smooth I I' 1
theorem smooth_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] [has_zero M'] :
smooth I I' 0
theorem cont_mdiff_on_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {n : ℕ∞} {c : M'} :
cont_mdiff_on I I' n (λ (x : M), c) s
theorem cont_mdiff_on_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {n : ℕ∞} [has_zero M'] :
cont_mdiff_on I I' n 0 s
theorem cont_mdiff_on_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {n : ℕ∞} [has_one M'] :
cont_mdiff_on I I' n 1 s
theorem smooth_on_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {c : M'} :
smooth_on I I' (λ (x : M), c) s
theorem smooth_on_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} [has_one M'] :
smooth_on I I' 1 s
theorem smooth_on_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} [has_zero M'] :
smooth_on I I' 0 s
theorem cont_mdiff_at_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {x : M} {n : ℕ∞} {c : M'} :
cont_mdiff_at I I' n (λ (x : M), c) x
theorem cont_mdiff_at_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {x : M} {n : ℕ∞} [has_zero M'] :
cont_mdiff_at I I' n 0 x
theorem cont_mdiff_at_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {x : M} {n : ℕ∞} [has_one M'] :
cont_mdiff_at I I' n 1 x
theorem smooth_at_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {x : M} {c : M'} :
smooth_at I I' (λ (x : M), c) x
theorem smooth_at_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {x : M} [has_zero M'] :
smooth_at I I' 0 x
theorem smooth_at_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {x : M} [has_one M'] :
smooth_at I I' 1 x
theorem cont_mdiff_within_at_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {x : M} {n : ℕ∞} {c : M'} :
cont_mdiff_within_at I I' n (λ (x : M), c) s x
theorem cont_mdiff_within_at_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {x : M} {n : ℕ∞} [has_one M'] :
theorem cont_mdiff_within_at_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {x : M} {n : ℕ∞} [has_zero M'] :
theorem smooth_within_at_const {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {x : M} {c : M'} :
smooth_within_at I I' (λ (x : M), c) s x
theorem smooth_within_at_zero {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {x : M} [has_zero M'] :
smooth_within_at I I' 0 s x
theorem smooth_within_at_one {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {s : set M} {x : M} [has_one M'] :
smooth_within_at I I' 1 s x
theorem cont_mdiff_of_support {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {n : ℕ∞} {f : M F} (hf : (x : M), x tsupport f cont_mdiff_at I (model_with_corners_self 𝕜 F) n f x) :

The inclusion map from one open set to another is smooth #

theorem cont_mdiff_inclusion {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {n : ℕ∞} {U V : topological_space.opens M} (h : U V) :
theorem smooth_inclusion {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {U V : topological_space.opens M} (h : U V) :

Equivalence with the basic definition for functions between vector spaces #

theorem cont_mdiff_within_at_iff_cont_diff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} {x : E} :
theorem cont_mdiff_within_at.cont_diff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} {x : E} :

Alias of the forward direction of cont_mdiff_within_at_iff_cont_diff_within_at.

theorem cont_diff_within_at.cont_mdiff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} {x : E} :

Alias of the reverse direction of cont_mdiff_within_at_iff_cont_diff_within_at.

theorem cont_mdiff_at_iff_cont_diff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {x : E} :
theorem cont_diff_at.cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {x : E} :

Alias of the reverse direction of cont_mdiff_at_iff_cont_diff_at.

theorem cont_mdiff_at.cont_diff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {x : E} :

Alias of the forward direction of cont_mdiff_at_iff_cont_diff_at.

theorem cont_mdiff_on_iff_cont_diff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} :
theorem cont_mdiff_on.cont_diff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} :

Alias of the forward direction of cont_mdiff_on_iff_cont_diff_on.

theorem cont_diff_on.cont_mdiff_on {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} {s : set E} :

Alias of the reverse direction of cont_mdiff_on_iff_cont_diff_on.

theorem cont_mdiff_iff_cont_diff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} :
theorem cont_diff.cont_mdiff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} :

Alias of the reverse direction of cont_mdiff_iff_cont_diff.

theorem cont_mdiff.cont_diff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {n : ℕ∞} {f : E E'} :

Alias of the forward direction of cont_mdiff_iff_cont_diff.

theorem cont_diff_within_at.comp_cont_mdiff_within_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {n : ℕ∞} {g : F F'} {f : M F} {s : set M} {t : set F} {x : M} (hg : cont_diff_within_at 𝕜 n g t (f x)) (hf : cont_mdiff_within_at I (model_with_corners_self 𝕜 F) n f s x) (h : s f ⁻¹' t) :
theorem cont_diff_at.comp_cont_mdiff_at {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {n : ℕ∞} {g : F F'} {f : M F} {x : M} (hg : cont_diff_at 𝕜 n g (f x)) (hf : cont_mdiff_at I (model_with_corners_self 𝕜 F) n f x) :
theorem cont_diff.comp_cont_mdiff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {n : ℕ∞} {g : F F'} {f : M F} (hg : cont_diff 𝕜 n g) (hf : cont_mdiff I (model_with_corners_self 𝕜 F) n f) :

Smoothness of standard maps associated to the product of manifolds #

theorem cont_mdiff_within_at.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {s : set M} {x : M} {n : ℕ∞} {f : M M'} {g : M N'} (hf : cont_mdiff_within_at I I' n f s x) (hg : cont_mdiff_within_at I J' n g s x) :
cont_mdiff_within_at I (I'.prod J') n (λ (x : M), (f x, g x)) s x
theorem cont_mdiff_within_at.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {s : set M} {x : M} {n : ℕ∞} {f : M E'} {g : M F'} (hf : cont_mdiff_within_at I (model_with_corners_self 𝕜 E') n f s x) (hg : cont_mdiff_within_at I (model_with_corners_self 𝕜 F') n g s x) :
cont_mdiff_within_at I (model_with_corners_self 𝕜 (E' × F')) n (λ (x : M), (f x, g x)) s x
theorem cont_mdiff_at.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {x : M} {n : ℕ∞} {f : M M'} {g : M N'} (hf : cont_mdiff_at I I' n f x) (hg : cont_mdiff_at I J' n g x) :
cont_mdiff_at I (I'.prod J') n (λ (x : M), (f x, g x)) x
theorem cont_mdiff_at.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {x : M} {n : ℕ∞} {f : M E'} {g : M F'} (hf : cont_mdiff_at I (model_with_corners_self 𝕜 E') n f x) (hg : cont_mdiff_at I (model_with_corners_self 𝕜 F') n g x) :
cont_mdiff_at I (model_with_corners_self 𝕜 (E' × F')) n (λ (x : M), (f x, g x)) x
theorem cont_mdiff_on.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {s : set M} {n : ℕ∞} {f : M M'} {g : M N'} (hf : cont_mdiff_on I I' n f s) (hg : cont_mdiff_on I J' n g s) :
cont_mdiff_on I (I'.prod J') n (λ (x : M), (f x, g x)) s
theorem cont_mdiff_on.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {s : set M} {n : ℕ∞} {f : M E'} {g : M F'} (hf : cont_mdiff_on I (model_with_corners_self 𝕜 E') n f s) (hg : cont_mdiff_on I (model_with_corners_self 𝕜 F') n g s) :
cont_mdiff_on I (model_with_corners_self 𝕜 (E' × F')) n (λ (x : M), (f x, g x)) s
theorem cont_mdiff.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {n : ℕ∞} {f : M M'} {g : M N'} (hf : cont_mdiff I I' n f) (hg : cont_mdiff I J' n g) :
cont_mdiff I (I'.prod J') n (λ (x : M), (f x, g x))
theorem cont_mdiff.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {n : ℕ∞} {f : M E'} {g : M F'} (hf : cont_mdiff I (model_with_corners_self 𝕜 E') n f) (hg : cont_mdiff I (model_with_corners_self 𝕜 F') n g) :
cont_mdiff I (model_with_corners_self 𝕜 (E' × F')) n (λ (x : M), (f x, g x))
theorem smooth_within_at.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {s : set M} {x : M} {f : M M'} {g : M N'} (hf : smooth_within_at I I' f s x) (hg : smooth_within_at I J' g s x) :
smooth_within_at I (I'.prod J') (λ (x : M), (f x, g x)) s x
theorem smooth_within_at.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {s : set M} {x : M} {f : M E'} {g : M F'} (hf : smooth_within_at I (model_with_corners_self 𝕜 E') f s x) (hg : smooth_within_at I (model_with_corners_self 𝕜 F') g s x) :
smooth_within_at I (model_with_corners_self 𝕜 (E' × F')) (λ (x : M), (f x, g x)) s x
theorem smooth_at.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {x : M} {f : M M'} {g : M N'} (hf : smooth_at I I' f x) (hg : smooth_at I J' g x) :
smooth_at I (I'.prod J') (λ (x : M), (f x, g x)) x
theorem smooth_at.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {x : M} {f : M E'} {g : M F'} (hf : smooth_at I (model_with_corners_self 𝕜 E') f x) (hg : smooth_at I (model_with_corners_self 𝕜 F') g x) :
smooth_at I (model_with_corners_self 𝕜 (E' × F')) (λ (x : M), (f x, g x)) x
theorem smooth_on.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {s : set M} {f : M M'} {g : M N'} (hf : smooth_on I I' f s) (hg : smooth_on I J' g s) :
smooth_on I (I'.prod J') (λ (x : M), (f x, g x)) s
theorem smooth_on.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {s : set M} {f : M E'} {g : M F'} (hf : smooth_on I (model_with_corners_self 𝕜 E') f s) (hg : smooth_on I (model_with_corners_self 𝕜 F') g s) :
smooth_on I (model_with_corners_self 𝕜 (E' × F')) (λ (x : M), (f x, g x)) s
theorem smooth.prod_mk {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {g : M N'} (hf : smooth I I' f) (hg : smooth I J' g) :
smooth I (I'.prod J') (λ (x : M), (f x, g x))
theorem smooth.prod_mk_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {f : M E'} {g : M F'} (hf : smooth I (model_with_corners_self 𝕜 E') f) (hg : smooth I (model_with_corners_self 𝕜 F') g) :
smooth I (model_with_corners_self 𝕜 (E' × F')) (λ (x : M), (f x, g x))
theorem cont_mdiff_within_at_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {s : set (M × N)} {p : M × N} :
theorem cont_mdiff_within_at.fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {f : N M × M'} {s : set N} {x : N} (hf : cont_mdiff_within_at J (I.prod I') n f s x) :
cont_mdiff_within_at J I n (λ (x : N), (f x).fst) s x
theorem cont_mdiff_at_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {p : M × N} :
theorem cont_mdiff_on_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {s : set (M × N)} :
theorem cont_mdiff_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} :
theorem smooth_within_at_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {s : set (M × N)} {p : M × N} :
theorem smooth_at_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {p : M × N} :
theorem smooth_on_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {s : set (M × N)} :
theorem smooth_fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] :
theorem cont_mdiff_at.fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {f : N M × M'} {x : N} (hf : cont_mdiff_at J (I.prod I') n f x) :
cont_mdiff_at J I n (λ (x : N), (f x).fst) x
theorem cont_mdiff.fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {f : N M × M'} (hf : cont_mdiff J (I.prod I') n f) :
cont_mdiff J I n (λ (x : N), (f x).fst)
theorem smooth_at.fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {f : N M × M'} {x : N} (hf : smooth_at J (I.prod I') f x) :
smooth_at J I (λ (x : N), (f x).fst) x
theorem smooth.fst {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {f : N M × M'} (hf : smooth J (I.prod I') f) :
smooth J I (λ (x : N), (f x).fst)
theorem cont_mdiff_within_at_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {s : set (M × N)} {p : M × N} :
theorem cont_mdiff_within_at.snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {f : N M × M'} {s : set N} {x : N} (hf : cont_mdiff_within_at J (I.prod I') n f s x) :
cont_mdiff_within_at J I' n (λ (x : N), (f x).snd) s x
theorem cont_mdiff_at_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {p : M × N} :
theorem cont_mdiff_on_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {s : set (M × N)} :
theorem cont_mdiff_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} :
theorem smooth_within_at_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {s : set (M × N)} {p : M × N} :
theorem smooth_at_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {p : M × N} :
theorem smooth_on_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {s : set (M × N)} :
theorem smooth_snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] :
theorem cont_mdiff_at.snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {f : N M × M'} {x : N} (hf : cont_mdiff_at J (I.prod I') n f x) :
cont_mdiff_at J I' n (λ (x : N), (f x).snd) x
theorem cont_mdiff.snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {n : ℕ∞} {f : N M × M'} (hf : cont_mdiff J (I.prod I') n f) :
cont_mdiff J I' n (λ (x : N), (f x).snd)
theorem smooth_at.snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {f : N M × M'} {x : N} (hf : smooth_at J (I.prod I') f x) :
smooth_at J I' (λ (x : N), (f x).snd) x
theorem smooth.snd {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {f : N M × M'} (hf : smooth J (I.prod I') f) :
smooth J I' (λ (x : N), (f x).snd)
theorem cont_mdiff_within_at_prod_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {n : ℕ∞} (f : M M' × N') {s : set M} {x : M} :
theorem cont_mdiff_at_prod_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {n : ℕ∞} (f : M M' × N') {x : M} :
cont_mdiff_at I (I'.prod J') n f x cont_mdiff_at I I' n (prod.fst f) x cont_mdiff_at I J' n (prod.snd f) x
theorem cont_mdiff_prod_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {n : ℕ∞} (f : M M' × N') :
cont_mdiff I (I'.prod J') n f cont_mdiff I I' n (prod.fst f) cont_mdiff I J' n (prod.snd f)
theorem smooth_at_prod_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] (f : M M' × N') {x : M} :
smooth_at I (I'.prod J') f x smooth_at I I' (prod.fst f) x smooth_at I J' (prod.snd f) x
theorem smooth_prod_iff {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] (f : M M' × N') :
smooth I (I'.prod J') f smooth I I' (prod.fst f) smooth I J' (prod.snd f)
theorem smooth_prod_assoc {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] :
smooth ((I.prod I').prod J) (I.prod (I'.prod J)) (λ (x : (M × M') × N), (x.fst.fst, x.fst.snd, x.snd))
theorem cont_mdiff_within_at.prod_map' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {s : set M} {n : ℕ∞} {g : N N'} {r : set N} {p : M × N} (hf : cont_mdiff_within_at I I' n f s p.fst) (hg : cont_mdiff_within_at J J' n g r p.snd) :
cont_mdiff_within_at (I.prod J) (I'.prod J') n (prod.map f g) (s ×ˢ r) p

The product map of two C^n functions within a set at a point is C^n within the product set at the product point.

theorem cont_mdiff_within_at.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {s : set M} {x : M} {n : ℕ∞} {g : N N'} {r : set N} {y : N} (hf : cont_mdiff_within_at I I' n f s x) (hg : cont_mdiff_within_at J J' n g r y) :
cont_mdiff_within_at (I.prod J) (I'.prod J') n (prod.map f g) (s ×ˢ r) (x, y)
theorem cont_mdiff_at.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {x : M} {n : ℕ∞} {g : N N'} {y : N} (hf : cont_mdiff_at I I' n f x) (hg : cont_mdiff_at J J' n g y) :
cont_mdiff_at (I.prod J) (I'.prod J') n (prod.map f g) (x, y)
theorem cont_mdiff_at.prod_map' {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {n : ℕ∞} {g : N N'} {p : M × N} (hf : cont_mdiff_at I I' n f p.fst) (hg : cont_mdiff_at J J' n g p.snd) :
cont_mdiff_at (I.prod J) (I'.prod J') n (prod.map f g) p
theorem cont_mdiff_on.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {s : set M} {n : ℕ∞} {g : N N'} {r : set N} (hf : cont_mdiff_on I I' n f s) (hg : cont_mdiff_on J J' n g r) :
cont_mdiff_on (I.prod J) (I'.prod J') n (prod.map f g) (s ×ˢ r)
theorem cont_mdiff.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {n : ℕ∞} {g : N N'} (hf : cont_mdiff I I' n f) (hg : cont_mdiff J J' n g) :
cont_mdiff (I.prod J) (I'.prod J') n (prod.map f g)
theorem smooth_within_at.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {s : set M} {x : M} {g : N N'} {r : set N} {y : N} (hf : smooth_within_at I I' f s x) (hg : smooth_within_at J J' g r y) :
smooth_within_at (I.prod J) (I'.prod J') (prod.map f g) (s ×ˢ r) (x, y)
theorem smooth_at.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {x : M} {g : N N'} {y : N} (hf : smooth_at I I' f x) (hg : smooth_at J J' g y) :
smooth_at (I.prod J) (I'.prod J') (prod.map f g) (x, y)
theorem smooth_on.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {s : set M} {g : N N'} {r : set N} (hf : smooth_on I I' f s) (hg : smooth_on J J' g r) :
smooth_on (I.prod J) (I'.prod J') (prod.map f g) (s ×ˢ r)
theorem smooth.prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {E' : Type u_5} [normed_add_comm_group E'] [normed_space 𝕜 E'] {H' : Type u_6} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M' : Type u_7} [topological_space M'] [charted_space H' M'] {F : Type u_11} [normed_add_comm_group F] [normed_space 𝕜 F] {G : Type u_12} [topological_space G] {J : model_with_corners 𝕜 F G} {N : Type u_13} [topological_space N] [charted_space G N] {F' : Type u_14} [normed_add_comm_group F'] [normed_space 𝕜 F'] {G' : Type u_15} [topological_space G'] {J' : model_with_corners 𝕜 F' G'} {N' : Type u_16} [topological_space N'] [charted_space G' N'] {f : M M'} {g : N N'} (hf : smooth I I' f) (hg : smooth J J' g) :
smooth (I.prod J) (I'.prod J') (prod.map f g)

Smoothness of functions with codomain Π i, F i #

We have no model_with_corners.pi yet, so we prove lemmas about functions f : M → Π i, F i and use 𝓘(𝕜, Π i, F i) as the model space.

theorem cont_mdiff_within_at_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {x : M} {n : ℕ∞} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
cont_mdiff_within_at I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) n φ s x (i : ι), cont_mdiff_within_at I (model_with_corners_self 𝕜 (Fi i)) n (λ (x : M), φ x i) s x
theorem cont_mdiff_on_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {n : ℕ∞} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
cont_mdiff_on I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) n φ s (i : ι), cont_mdiff_on I (model_with_corners_self 𝕜 (Fi i)) n (λ (x : M), φ x i) s
theorem cont_mdiff_at_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {x : M} {n : ℕ∞} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
cont_mdiff_at I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) n φ x (i : ι), cont_mdiff_at I (model_with_corners_self 𝕜 (Fi i)) n (λ (x : M), φ x i) x
theorem cont_mdiff_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {n : ℕ∞} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
cont_mdiff I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) n φ (i : ι), cont_mdiff I (model_with_corners_self 𝕜 (Fi i)) n (λ (x : M), φ x i)
theorem smooth_within_at_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {x : M} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
smooth_within_at I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) φ s x (i : ι), smooth_within_at I (model_with_corners_self 𝕜 (Fi i)) (λ (x : M), φ x i) s x
theorem smooth_on_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
smooth_on I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) φ s (i : ι), smooth_on I (model_with_corners_self 𝕜 (Fi i)) (λ (x : M), φ x i) s
theorem smooth_at_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {x : M} {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
smooth_at I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) φ x (i : ι), smooth_at I (model_with_corners_self 𝕜 (Fi i)) (λ (x : M), φ x i) x
theorem smooth_pi_space {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {ι : Type u_21} [fintype ι] {Fi : ι Type u_22} [Π (i : ι), normed_add_comm_group (Fi i)] [Π (i : ι), normed_space 𝕜 (Fi i)] {φ : M Π (i : ι), Fi i} :
smooth I (model_with_corners_self 𝕜 (Π (i : ι), Fi i)) φ (i : ι), smooth I (model_with_corners_self 𝕜 (Fi i)) (λ (x : M), φ x i)

Linear maps between normed spaces are smooth #

theorem cont_mdiff_within_at.clm_comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₁)} {s : set M} {x : M} (hg : cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g s x) (hf : cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₁)) n f s x) :
cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₃)) n (λ (x : M), (g x).comp (f x)) s x
theorem cont_mdiff_at.clm_comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₁)} {x : M} (hg : cont_mdiff_at I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g x) (hf : cont_mdiff_at I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₁)) n f x) :
cont_mdiff_at I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₃)) n (λ (x : M), (g x).comp (f x)) x
theorem cont_mdiff_on.clm_comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₁)} {s : set M} (hg : cont_mdiff_on I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g s) (hf : cont_mdiff_on I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₁)) n f s) :
cont_mdiff_on I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₃)) n (λ (x : M), (g x).comp (f x)) s
theorem cont_mdiff.clm_comp {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₁)} (hg : cont_mdiff I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g) (hf : cont_mdiff I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₁)) n f) :
cont_mdiff I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₃)) n (λ (x : M), (g x).comp (f x))
theorem cont_mdiff_within_at.clm_apply {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₂)} {f : M F₁} {s : set M} {x : M} (hg : cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₂)) n g s x) (hf : cont_mdiff_within_at I (model_with_corners_self 𝕜 F₁) n f s x) :
cont_mdiff_within_at I (model_with_corners_self 𝕜 F₂) n (λ (x : M), (g x) (f x)) s x
theorem cont_mdiff_at.clm_apply {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₂)} {f : M F₁} {x : M} (hg : cont_mdiff_at I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₂)) n g x) (hf : cont_mdiff_at I (model_with_corners_self 𝕜 F₁) n f x) :
cont_mdiff_at I (model_with_corners_self 𝕜 F₂) n (λ (x : M), (g x) (f x)) x
theorem cont_mdiff_on.clm_apply {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₂)} {f : M F₁} {s : set M} (hg : cont_mdiff_on I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₂)) n g s) (hf : cont_mdiff_on I (model_with_corners_self 𝕜 F₁) n f s) :
cont_mdiff_on I (model_with_corners_self 𝕜 F₂) n (λ (x : M), (g x) (f x)) s
theorem cont_mdiff.clm_apply {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₂)} {f : M F₁} (hg : cont_mdiff I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₂)) n g) (hf : cont_mdiff I (model_with_corners_self 𝕜 F₁) n f) :
cont_mdiff I (model_with_corners_self 𝕜 F₂) n (λ (x : M), (g x) (f x))
theorem cont_mdiff_within_at.clm_prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {F₄ : Type u_20} [normed_add_comm_group F₄] [normed_space 𝕜 F₄] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₄)} {s : set M} {x : M} (hg : cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g s x) (hf : cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₄)) n f s x) :
cont_mdiff_within_at I (model_with_corners_self 𝕜 (F₁ × F₂ →L[𝕜] F₃ × F₄)) n (λ (x : M), (g x).prod_map (f x)) s x
theorem cont_mdiff_at.clm_prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {F₄ : Type u_20} [normed_add_comm_group F₄] [normed_space 𝕜 F₄] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₄)} {x : M} (hg : cont_mdiff_at I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g x) (hf : cont_mdiff_at I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₄)) n f x) :
cont_mdiff_at I (model_with_corners_self 𝕜 (F₁ × F₂ →L[𝕜] F₃ × F₄)) n (λ (x : M), (g x).prod_map (f x)) x
theorem cont_mdiff_on.clm_prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {F₄ : Type u_20} [normed_add_comm_group F₄] [normed_space 𝕜 F₄] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₄)} {s : set M} (hg : cont_mdiff_on I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g s) (hf : cont_mdiff_on I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₄)) n f s) :
cont_mdiff_on I (model_with_corners_self 𝕜 (F₁ × F₂ →L[𝕜] F₃ × F₄)) n (λ (x : M), (g x).prod_map (f x)) s
theorem cont_mdiff.clm_prod_map {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {F₁ : Type u_17} [normed_add_comm_group F₁] [normed_space 𝕜 F₁] {F₂ : Type u_18} [normed_add_comm_group F₂] [normed_space 𝕜 F₂] {F₃ : Type u_19} [normed_add_comm_group F₃] [normed_space 𝕜 F₃] {F₄ : Type u_20} [normed_add_comm_group F₄] [normed_space 𝕜 F₄] {n : ℕ∞} {g : M (F₁ →L[𝕜] F₃)} {f : M (F₂ →L[𝕜] F₄)} (hg : cont_mdiff I (model_with_corners_self 𝕜 (F₁ →L[𝕜] F₃)) n g) (hf : cont_mdiff I (model_with_corners_self 𝕜 (F₂ →L[𝕜] F₄)) n f) :
cont_mdiff I (model_with_corners_self 𝕜 (F₁ × F₂ →L[𝕜] F₃ × F₄)) n (λ (x : M), (g x).prod_map (f x))

Smoothness of standard operations #

theorem smooth_smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] :
smooth ((model_with_corners_self 𝕜 𝕜).prod (model_with_corners_self 𝕜 V)) (model_with_corners_self 𝕜 V) (λ (p : 𝕜 × V), p.fst p.snd)

On any vector space, multiplication by a scalar is a smooth operation.

theorem cont_mdiff_within_at.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {x : M} {n : ℕ∞} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : cont_mdiff_within_at I (model_with_corners_self 𝕜 𝕜) n f s x) (hg : cont_mdiff_within_at I (model_with_corners_self 𝕜 V) n g s x) :
cont_mdiff_within_at I (model_with_corners_self 𝕜 V) n (λ (p : M), f p g p) s x
theorem cont_mdiff_at.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {x : M} {n : ℕ∞} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : cont_mdiff_at I (model_with_corners_self 𝕜 𝕜) n f x) (hg : cont_mdiff_at I (model_with_corners_self 𝕜 V) n g x) :
cont_mdiff_at I (model_with_corners_self 𝕜 V) n (λ (p : M), f p g p) x
theorem cont_mdiff_on.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {n : ℕ∞} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : cont_mdiff_on I (model_with_corners_self 𝕜 𝕜) n f s) (hg : cont_mdiff_on I (model_with_corners_self 𝕜 V) n g s) :
cont_mdiff_on I (model_with_corners_self 𝕜 V) n (λ (p : M), f p g p) s
theorem cont_mdiff.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {n : ℕ∞} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : cont_mdiff I (model_with_corners_self 𝕜 𝕜) n f) (hg : cont_mdiff I (model_with_corners_self 𝕜 V) n g) :
cont_mdiff I (model_with_corners_self 𝕜 V) n (λ (p : M), f p g p)
theorem smooth_within_at.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {x : M} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : smooth_within_at I (model_with_corners_self 𝕜 𝕜) f s x) (hg : smooth_within_at I (model_with_corners_self 𝕜 V) g s x) :
smooth_within_at I (model_with_corners_self 𝕜 V) (λ (p : M), f p g p) s x
theorem smooth_at.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {x : M} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : smooth_at I (model_with_corners_self 𝕜 𝕜) f x) (hg : smooth_at I (model_with_corners_self 𝕜 V) g x) :
smooth_at I (model_with_corners_self 𝕜 V) (λ (p : M), f p g p) x
theorem smooth_on.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {s : set M} {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : smooth_on I (model_with_corners_self 𝕜 𝕜) f s) (hg : smooth_on I (model_with_corners_self 𝕜 V) g s) :
smooth_on I (model_with_corners_self 𝕜 V) (λ (p : M), f p g p) s
theorem smooth.smul {𝕜 : Type u_1} [nontrivially_normed_field 𝕜] {E : Type u_2} [normed_add_comm_group E] [normed_space 𝕜 E] {H : Type u_3} [topological_space H] {I : model_with_corners 𝕜 E H} {M : Type u_4} [topological_space M] [charted_space H M] {V : Type u_21} [normed_add_comm_group V] [normed_space 𝕜 V] {f : M 𝕜} {g : M V} (hf : smooth I (model_with_corners_self 𝕜 𝕜) f) (hg : smooth I (model_with_corners_self 𝕜 V) g) :
smooth I (model_with_corners_self 𝕜 V) (λ (p : M), f p g p)

Smoothness of (local) structomorphisms #

Let M and M' be smooth manifolds with the same model-with-corners, I. Then f : M → M' is a local structomorphism for I, if and only if it is manifold-smooth on the domain of definition in both directions.