The Karoubi envelope of a category #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we define the Karoubi envelope karoubi C
of a category C
.
Main constructions and definitions #
karoubi C
is the Karoubi envelope of a categoryC
: it is an idempotent complete category. It is also preadditive whenC
is preadditive.to_karoubi C : C ⥤ karoubi C
is a fully faithful functor, which is an equivalence (to_karoubi_is_equivalence
) whenC
is idempotent complete.
In a preadditive category C
, when an object X
decomposes as X ≅ P ⨿ Q
, one may
consider P
as a direct factor of X
and up to unique isomorphism, it is determined by the
obvious idempotent X ⟶ P ⟶ X
which is the projection onto P
with kernel Q
. More generally,
one may define a formal direct factor of an object X : C
: it consists of an idempotent
p : X ⟶ X
which is thought as the "formal image" of p
. The type karoubi C
shall be the
type of the objects of the karoubi enveloppe of C
. It makes sense for any category C
.
Instances for category_theory.idempotents.karoubi
- category_theory.idempotents.karoubi.has_sizeof_inst
- category_theory.idempotents.karoubi.category_theory.category
- category_theory.idempotents.karoubi.coe
- category_theory.idempotents.karoubi.category_theory.preadditive
- category_theory.idempotents.karoubi.category_theory.is_idempotent_complete
- category_theory.idempotents.karoubi.karoubi_has_finite_biproducts
A morphism P ⟶ Q
in the category karoubi C
is a morphism in the underlying category
C
which satisfies a relation, which in the preadditive case, expresses that it induces a
map between the corresponding "formal direct factors" and that it vanishes on the complement
formal direct factor.
Instances for category_theory.idempotents.karoubi.hom
- category_theory.idempotents.karoubi.hom.has_sizeof_inst
- category_theory.idempotents.karoubi.hom.inhabited
The category structure on the karoubi envelope of a category.
Equations
- category_theory.idempotents.karoubi.category_theory.category = {to_category_struct := {to_quiver := {hom := category_theory.idempotents.karoubi.hom _inst_1}, id := λ (P : category_theory.idempotents.karoubi C), {f := P.p, comm := _}, comp := λ (P Q R : category_theory.idempotents.karoubi C) (f : P ⟶ Q) (g : Q ⟶ R), {f := f.f ≫ g.f, comm := _}}, id_comp' := _, comp_id' := _, assoc' := _}
It is possible to coerce an object of C
into an object of karoubi C
.
See also the functor to_karoubi
.
The obvious fully faithful functor to_karoubi
sends an object X : C
to the obvious
formal direct factor of X
given by 𝟙 X
.
Equations
Instances for category_theory.idempotents.to_karoubi
- category_theory.idempotents.to_karoubi.category_theory.full
- category_theory.idempotents.to_karoubi.category_theory.faithful
- category_theory.idempotents.to_karoubi.category_theory.functor.additive
- category_theory.idempotents.to_karoubi.category_theory.ess_surj
- category_theory.idempotents.to_karoubi.category_theory.is_equivalence
Equations
- category_theory.idempotents.to_karoubi.category_theory.full C = {preimage := λ (X Y : C) (f : (category_theory.idempotents.to_karoubi C).obj X ⟶ (category_theory.idempotents.to_karoubi C).obj Y), f.f, witness' := _}
Equations
- category_theory.idempotents.quiver.hom.add_comm_group = {add := λ (f g : P ⟶ Q), {f := f.f + g.f, comm := _}, add_assoc := _, zero := {f := 0, comm := _}, zero_add := _, add_zero := _, nsmul := add_group.nsmul._default {f := 0, comm := _} (λ (f g : P ⟶ Q), {f := f.f + g.f, comm := _}) category_theory.idempotents.quiver.hom.add_comm_group._proof_6 category_theory.idempotents.quiver.hom.add_comm_group._proof_7, nsmul_zero' := _, nsmul_succ' := _, neg := λ (f : P ⟶ Q), {f := -f.f, comm := _}, sub := add_group.sub._default (λ (f g : P ⟶ Q), {f := f.f + g.f, comm := _}) category_theory.idempotents.quiver.hom.add_comm_group._proof_11 {f := 0, comm := _} category_theory.idempotents.quiver.hom.add_comm_group._proof_12 category_theory.idempotents.quiver.hom.add_comm_group._proof_13 (add_group.nsmul._default {f := 0, comm := _} (λ (f g : P ⟶ Q), {f := f.f + g.f, comm := _}) category_theory.idempotents.quiver.hom.add_comm_group._proof_6 category_theory.idempotents.quiver.hom.add_comm_group._proof_7) category_theory.idempotents.quiver.hom.add_comm_group._proof_14 category_theory.idempotents.quiver.hom.add_comm_group._proof_15 (λ (f : P ⟶ Q), {f := -f.f, comm := _}), sub_eq_add_neg := _, zsmul := add_group.zsmul._default (λ (f g : P ⟶ Q), {f := f.f + g.f, comm := _}) category_theory.idempotents.quiver.hom.add_comm_group._proof_17 {f := 0, comm := _} category_theory.idempotents.quiver.hom.add_comm_group._proof_18 category_theory.idempotents.quiver.hom.add_comm_group._proof_19 (add_group.nsmul._default {f := 0, comm := _} (λ (f g : P ⟶ Q), {f := f.f + g.f, comm := _}) category_theory.idempotents.quiver.hom.add_comm_group._proof_6 category_theory.idempotents.quiver.hom.add_comm_group._proof_7) category_theory.idempotents.quiver.hom.add_comm_group._proof_20 category_theory.idempotents.quiver.hom.add_comm_group._proof_21 (λ (f : P ⟶ Q), {f := -f.f, comm := _}), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}
The map sending f : P ⟶ Q
to f.f : P.X ⟶ Q.X
is additive.
The category karoubi C
is preadditive if C
is.
Equations
If C
is idempotent complete, the functor to_karoubi : C ⥤ karoubi C
is an equivalence.
The equivalence C ≅ karoubi C
when C
is idempotent complete.
The split mono which appears in the factorisation decomp_id P
.
The split epi which appears in the factorisation decomp_id P
.
The formal direct factor of P.X
given by the idempotent P.p
in the category C
is actually a direct factor in the category karoubi C
.