Locally discrete bicategories #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
A category C
can be promoted to a strict bicategory locally_discrete C
. The objects and the
1-morphisms in locally_discrete C
are the same as the objects and the morphisms, respectively,
in C
, and the 2-morphisms in locally_discrete C
are the equalities between 1-morphisms. In
other words, the category consisting of the 1-morphisms between each pair of objects X
and Y
in locally_discrete C
is defined as the discrete category associated with the type X ⟶ Y
.
A type synonym for promoting any type to a category, with the only morphisms being equalities.
Equations
Instances for category_theory.locally_discrete
Equations
Equations
Extract the equation from a 2-morphism in a locally discrete 2-category.
The locally discrete bicategory on a category is a bicategory in which the objects and the 1-morphisms are the same as those in the underlying category, and the 2-morphisms are the equalities between 1-morphisms.
Equations
- category_theory.locally_discrete_bicategory C = {to_category_struct := category_theory.locally_discrete.category_theory.category_struct category_theory.category.to_category_struct, hom_category := λ (X Z : category_theory.locally_discrete C), category_theory.discrete_category (X ⟶ Z), whisker_left := λ (X Y Z : category_theory.locally_discrete C) (f : X ⟶ Y) (g h : Y ⟶ Z) (η : g ⟶ h), category_theory.eq_to_hom _, whisker_right := λ (X Y Z : category_theory.locally_discrete C) (f g : X ⟶ Y) (η : f ⟶ g) (h : Y ⟶ Z), category_theory.eq_to_hom _, associator := λ (W X Y Z : category_theory.locally_discrete C) (f : W ⟶ X) (g : X ⟶ Y) (h : Y ⟶ Z), category_theory.eq_to_iso _, left_unitor := λ (X Y : category_theory.locally_discrete C) (f : X ⟶ Y), category_theory.eq_to_iso _, right_unitor := λ (X Y : category_theory.locally_discrete C) (f : X ⟶ Y), category_theory.eq_to_iso _, whisker_left_id' := _, whisker_left_comp' := _, id_whisker_left' := _, comp_whisker_left' := _, id_whisker_right' := _, comp_whisker_right' := _, whisker_right_id' := _, whisker_right_comp' := _, whisker_assoc' := _, whisker_exchange' := _, pentagon' := _, triangle' := _}
A locally discrete bicategory is strict.
If B
is a strict bicategory and I
is a (1-)category, any functor (of 1-categories) I ⥤ B
can
be promoted to an oplax functor from locally_discrete I
to B
.
Equations
- F.to_oplax_functor = {obj := F.obj, map := λ (X Y : category_theory.locally_discrete I) (f : X ⟶ Y), F.map f.as, map₂ := λ (i j : category_theory.locally_discrete I) (f g : i ⟶ j) (η : f ⟶ g), category_theory.eq_to_hom _, map_id := λ (i : category_theory.locally_discrete I), category_theory.eq_to_hom _, map_comp := λ (i j k : category_theory.locally_discrete I) (f : i ⟶ j) (g : j ⟶ k), category_theory.eq_to_hom _, map_comp_naturality_left' := _, map_comp_naturality_right' := _, map₂_id' := _, map₂_comp' := _, map₂_associator' := _, map₂_left_unitor' := _, map₂_right_unitor' := _}