The bicategory of oplax functors between two bicategories #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Given bicategories B
and C
, we give a bicategory structure on oplax_functor B C
whose
- objects are oplax functors,
- 1-morphisms are oplax natural transformations, and
- 2-morphisms are modifications.
def
category_theory.oplax_nat_trans.whisker_left
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H : category_theory.oplax_functor B C}
(η : F ⟶ G)
{θ ι : G ⟶ H}
(Γ : θ ⟶ ι) :
Left whiskering of an oplax natural transformation and a modification.
Equations
- category_theory.oplax_nat_trans.whisker_left η Γ = {app := λ (a : B), category_theory.bicategory.whisker_left (η.app a) (Γ.app a), naturality' := _}
@[simp]
theorem
category_theory.oplax_nat_trans.whisker_left_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H : category_theory.oplax_functor B C}
(η : F ⟶ G)
{θ ι : G ⟶ H}
(Γ : θ ⟶ ι)
(a : B) :
(category_theory.oplax_nat_trans.whisker_left η Γ).app a = category_theory.bicategory.whisker_left (η.app a) (Γ.app a)
def
category_theory.oplax_nat_trans.whisker_right
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H : category_theory.oplax_functor B C}
{η θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H) :
Right whiskering of an oplax natural transformation and a modification.
Equations
- category_theory.oplax_nat_trans.whisker_right Γ ι = {app := λ (a : B), category_theory.bicategory.whisker_right (Γ.app a) (ι.app a), naturality' := _}
@[simp]
theorem
category_theory.oplax_nat_trans.whisker_right_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H : category_theory.oplax_functor B C}
{η θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
(a : B) :
(category_theory.oplax_nat_trans.whisker_right Γ ι).app a = category_theory.bicategory.whisker_right (Γ.app a) (ι.app a)
@[simp]
theorem
category_theory.oplax_nat_trans.associator_inv_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H I : category_theory.oplax_functor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B) :
(category_theory.oplax_nat_trans.associator η θ ι).inv.app a = (category_theory.bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
@[simp]
theorem
category_theory.oplax_nat_trans.associator_hom_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H I : category_theory.oplax_functor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B) :
(category_theory.oplax_nat_trans.associator η θ ι).hom.app a = (category_theory.bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom
def
category_theory.oplax_nat_trans.associator
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G H I : category_theory.oplax_functor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I) :
Associator for the vertical composition of oplax natural transformations.
Equations
- category_theory.oplax_nat_trans.associator η θ ι = category_theory.oplax_nat_trans.modification_iso.of_components (λ (a : B), category_theory.bicategory.associator (η.app a) (θ.app a) (ι.app a)) _
@[simp]
theorem
category_theory.oplax_nat_trans.left_unitor_hom_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G : category_theory.oplax_functor B C}
(η : F ⟶ G)
(a : B) :
@[simp]
theorem
category_theory.oplax_nat_trans.left_unitor_inv_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G : category_theory.oplax_functor B C}
(η : F ⟶ G)
(a : B) :
def
category_theory.oplax_nat_trans.left_unitor
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G : category_theory.oplax_functor B C}
(η : F ⟶ G) :
Left unitor for the vertical composition of oplax natural transformations.
Equations
@[simp]
theorem
category_theory.oplax_nat_trans.right_unitor_inv_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G : category_theory.oplax_functor B C}
(η : F ⟶ G)
(a : B) :
@[simp]
theorem
category_theory.oplax_nat_trans.right_unitor_hom_app
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G : category_theory.oplax_functor B C}
(η : F ⟶ G)
(a : B) :
def
category_theory.oplax_nat_trans.right_unitor
{B : Type u₁}
[category_theory.bicategory B]
{C : Type u₂}
[category_theory.bicategory C]
{F G : category_theory.oplax_functor B C}
(η : F ⟶ G) :
Right unitor for the vertical composition of oplax natural transformations.
@[simp]
theorem
category_theory.oplax_functor.bicategory_right_unitor
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C]
(F G : category_theory.oplax_functor B C)
(η : F ⟶ G) :
@[simp]
theorem
category_theory.oplax_functor.bicategory_hom_category
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C]
(F H : category_theory.oplax_functor B C) :
@[simp]
theorem
category_theory.oplax_functor.bicategory_associator
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C]
(F G H I : category_theory.oplax_functor B C)
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I) :
@[simp]
theorem
category_theory.oplax_functor.bicategory_whisker_left
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C]
(F G H : category_theory.oplax_functor B C)
(η : F ⟶ G)
(_x _x_1 : G ⟶ H)
(Γ : _x ⟶ _x_1) :
@[simp]
theorem
category_theory.oplax_functor.bicategory_left_unitor
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C]
(F G : category_theory.oplax_functor B C)
(η : F ⟶ G) :
@[simp]
theorem
category_theory.oplax_functor.bicategory_whisker_right
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C]
(F G H : category_theory.oplax_functor B C)
(_x _x_1 : F ⟶ G)
(Γ : _x ⟶ _x_1)
(η : G ⟶ H) :
@[protected, instance]
def
category_theory.oplax_functor.bicategory
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C] :
A bicategory structure on the oplax functors between bicategories.
Equations
- category_theory.oplax_functor.bicategory B C = {to_category_struct := category_theory.oplax_nat_trans.category_theory.oplax_functor.category_theory.category_struct B C _inst_2, hom_category := λ (F H : category_theory.oplax_functor B C), category_theory.oplax_nat_trans.category F H, whisker_left := λ (F G H : category_theory.oplax_functor B C) (η : F ⟶ G) (_x _x_1 : G ⟶ H) (Γ : _x ⟶ _x_1), category_theory.oplax_nat_trans.whisker_left η Γ, whisker_right := λ (F G H : category_theory.oplax_functor B C) (_x _x_1 : F ⟶ G) (Γ : _x ⟶ _x_1) (η : G ⟶ H), category_theory.oplax_nat_trans.whisker_right Γ η, associator := λ (F G H I : category_theory.oplax_functor B C), category_theory.oplax_nat_trans.associator, left_unitor := λ (F G : category_theory.oplax_functor B C), category_theory.oplax_nat_trans.left_unitor, right_unitor := λ (F G : category_theory.oplax_functor B C), category_theory.oplax_nat_trans.right_unitor, whisker_left_id' := _, whisker_left_comp' := _, id_whisker_left' := _, comp_whisker_left' := _, id_whisker_right' := _, comp_whisker_right' := _, whisker_right_id' := _, whisker_right_comp' := _, whisker_assoc' := _, whisker_exchange' := _, pentagon' := _, triangle' := _}
@[simp]
theorem
category_theory.oplax_functor.bicategory_to_category_struct
(B : Type u₁)
[category_theory.bicategory B]
(C : Type u₂)
[category_theory.bicategory C] :