mathlib3 documentation

category_theory.bicategory.functor_bicategory

The bicategory of oplax functors between two bicategories #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

Given bicategories B and C, we give a bicategory structure on oplax_functor B C whose

def category_theory.oplax_nat_trans.whisker_left {B : Type u₁} [category_theory.bicategory B] {C : Type u₂} [category_theory.bicategory C] {F G H : category_theory.oplax_functor B C} (η : F G) {θ ι : G H} (Γ : θ ι) :
η θ η ι

Left whiskering of an oplax natural transformation and a modification.

Equations
def category_theory.oplax_nat_trans.whisker_right {B : Type u₁} [category_theory.bicategory B] {C : Type u₂} [category_theory.bicategory C] {F G H : category_theory.oplax_functor B C} {η θ : F G} (Γ : η θ) (ι : G H) :
η ι θ ι

Right whiskering of an oplax natural transformation and a modification.

Equations
def category_theory.oplax_nat_trans.associator {B : Type u₁} [category_theory.bicategory B] {C : Type u₂} [category_theory.bicategory C] {F G H I : category_theory.oplax_functor B C} (η : F G) (θ : G H) (ι : H I) :
θ) ι η θ ι

Associator for the vertical composition of oplax natural transformations.

Equations
@[protected, instance]

A bicategory structure on the oplax functors between bicategories.

Equations