mathlib3 documentation

field_theory.separable

Separable polynomials #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We define a polynomial to be separable if it is coprime with its derivative. We prove basic properties about separable polynomials here.

Main definitions #

def polynomial.separable {R : Type u} [comm_semiring R] (f : polynomial R) :
Prop

A polynomial is separable iff it is coprime with its derivative.

Equations
theorem polynomial.separable.of_mul_left {R : Type u} [comm_semiring R] {f g : polynomial R} (h : (f * g).separable) :
theorem polynomial.separable.of_dvd {R : Type u} [comm_semiring R] {f g : polynomial R} (hf : f.separable) (hfg : g f) :
theorem polynomial.separable.is_coprime {R : Type u} [comm_semiring R] {f g : polynomial R} (h : (f * g).separable) :
theorem polynomial.separable.of_pow' {R : Type u} [comm_semiring R] {f : polynomial R} {n : } (h : (f ^ n).separable) :
is_unit f f.separable n = 1 n = 0
theorem polynomial.separable.of_pow {R : Type u} [comm_semiring R] {f : polynomial R} (hf : ¬is_unit f) {n : } (hn : n 0) (hfs : (f ^ n).separable) :
theorem polynomial.separable.map {R : Type u} [comm_semiring R] {S : Type v} [comm_semiring S] {p : polynomial R} (h : p.separable) {f : R →+* S} :
theorem polynomial.is_unit_of_self_mul_dvd_separable {R : Type u} [comm_semiring R] {p q : polynomial R} (hp : p.separable) (hq : q * q p) :
theorem polynomial.separable.mul {R : Type u} [comm_ring R] {f g : polynomial R} (hf : f.separable) (hg : g.separable) (h : is_coprime f g) :
(f * g).separable
theorem polynomial.separable_prod' {R : Type u} [comm_ring R] {ι : Type u_1} {f : ι polynomial R} {s : finset ι} :
( (x : ι), x s (y : ι), y s x y is_coprime (f x) (f y)) ( (x : ι), x s (f x).separable) (s.prod (λ (x : ι), f x)).separable
theorem polynomial.separable_prod {R : Type u} [comm_ring R] {ι : Type u_1} [fintype ι] {f : ι polynomial R} (h1 : pairwise (is_coprime on f)) (h2 : (x : ι), (f x).separable) :
(finset.univ.prod (λ (x : ι), f x)).separable
theorem polynomial.separable.inj_of_prod_X_sub_C {R : Type u} [comm_ring R] [nontrivial R] {ι : Type u_1} {f : ι R} {s : finset ι} (hfs : (s.prod (λ (i : ι), polynomial.X - polynomial.C (f i))).separable) {x y : ι} (hx : x s) (hy : y s) (hfxy : f x = f y) :
x = y

If is_unit n in a comm_ring R, then X ^ n - u is separable for any unit u.

theorem polynomial.count_roots_le_one {R : Type u} [comm_ring R] [is_domain R] {p : polynomial R} (hsep : p.separable) (x : R) :
theorem polynomial.nodup_roots {R : Type u} [comm_ring R] [is_domain R] {p : polynomial R} (hsep : p.separable) :
theorem polynomial.separable_map {F : Type u} [field F] {K : Type v} [field K] (f : F →+* K) {p : polynomial F} :
theorem polynomial.separable_prod_X_sub_C_iff' {F : Type u} [field F] {ι : Type u_1} {f : ι F} {s : finset ι} :
(s.prod (λ (i : ι), polynomial.X - polynomial.C (f i))).separable (x : ι), x s (y : ι), y s f x = f y x = y
theorem polynomial.separable_or {F : Type u} [field F] (p : ) [HF : char_p F p] {f : polynomial F} (hf : irreducible f) :
theorem polynomial.exists_separable_of_irreducible {F : Type u} [field F] (p : ) [HF : char_p F p] {f : polynomial F} (hf : irreducible f) (hp : p 0) :
(n : ) (g : polynomial F), g.separable (polynomial.expand F (p ^ n)) g = f
theorem polynomial.is_unit_or_eq_zero_of_separable_expand {F : Type u} [field F] (p : ) [HF : char_p F p] {f : polynomial F} (n : ) (hp : 0 < p) (hf : ((polynomial.expand F (p ^ n)) f).separable) :
is_unit f n = 0
theorem polynomial.unique_separable_of_irreducible {F : Type u} [field F] (p : ) [HF : char_p F p] {f : polynomial F} (hf : irreducible f) (hp : 0 < p) (n₁ : ) (g₁ : polynomial F) (hg₁ : g₁.separable) (hgf₁ : (polynomial.expand F (p ^ n₁)) g₁ = f) (n₂ : ) (g₂ : polynomial F) (hg₂ : g₂.separable) (hgf₂ : (polynomial.expand F (p ^ n₂)) g₂ = f) :
n₁ = n₂ g₁ = g₂
theorem polynomial.separable_X_pow_sub_C {F : Type u} [field F] {n : } (a : F) (hn : n 0) (ha : a 0) :

If n ≠ 0 in F, then X ^ n - a is separable for any a ≠ 0.

In a field F, X ^ n - 1 is separable iff ↑n ≠ 0.

theorem polynomial.card_root_set_eq_nat_degree {F : Type u} [field F] {K : Type v} [field K] [algebra F K] {p : polynomial F} (hsep : p.separable) (hsplit : polynomial.splits (algebra_map F K) p) :
theorem polynomial.eq_X_sub_C_of_separable_of_root_eq {F : Type u} [field F] {K : Type v} [field K] {i : F →+* K} {x : F} {h : polynomial F} (h_sep : h.separable) (h_root : polynomial.eval x h = 0) (h_splits : polynomial.splits i h) (h_roots : (y : K), y (polynomial.map i h).roots y = i x) :
theorem polynomial.exists_finset_of_splits {F : Type u} [field F] {K : Type v} [field K] (i : F →+* K) {f : polynomial F} (sep : f.separable) (sp : polynomial.splits i f) :
theorem irreducible.separable {F : Type u} [field F] [char_zero F] {f : polynomial F} (hf : irreducible f) :
@[class]
structure is_separable (F : Type u_1) (K : Type u_2) [comm_ring F] [ring K] [algebra F K] :
Prop

Typeclass for separable field extension: K is a separable field extension of F iff the minimal polynomial of every x : K is separable.

We define this for general (commutative) rings and only assume F and K are fields if this is needed for a proof.

Instances of this typeclass
theorem is_separable.is_integral (F : Type u_1) {K : Type u_2} [comm_ring F] [ring K] [algebra F K] [is_separable F K] (x : K) :
theorem is_separable.separable (F : Type u_1) {K : Type u_2} [comm_ring F] [ring K] [algebra F K] [is_separable F K] (x : K) :
theorem is_separable_iff {F : Type u_1} {K : Type u_2} [comm_ring F] [ring K] [algebra F K] :
@[protected, instance]
def is_separable_self (F : Type u_1) [field F] :
@[protected, instance]
def is_separable.of_finite (F : Type u_1) (K : Type u_2) [field F] [field K] [algebra F K] [finite_dimensional F K] [char_zero F] :

A finite field extension in characteristic 0 is separable.

theorem is_separable_tower_top_of_is_separable (F : Type u_1) (K : Type u_2) (E : Type u_3) [field F] [field K] [field E] [algebra F K] [algebra F E] [algebra K E] [is_scalar_tower F K E] [is_separable F E] :
theorem is_separable_tower_bot_of_is_separable (F : Type u_1) (K : Type u_2) (E : Type u_3) [field F] [field K] [field E] [algebra F K] [algebra F E] [algebra K E] [is_scalar_tower F K E] [h : is_separable F E] :
theorem is_separable.of_alg_hom (F : Type u_1) {E : Type u_3} [field F] [field E] [algebra F E] (E' : Type u_2) [field E'] [algebra F E'] (f : E →ₐ[F] E') [is_separable F E'] :
theorem alg_hom.card_of_power_basis {S : Type u_2} [comm_ring S] {K : Type u_4} {L : Type u_5} [field K] [field L] [algebra K S] [algebra K L] (pb : power_basis K S) (h_sep : (minpoly K pb.gen).separable) (h_splits : polynomial.splits (algebra_map K L) (minpoly K pb.gen)) :