The upper half plane and its automorphisms #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines upper_half_plane
to be the upper half plane in ℂ
.
We furthermore equip it with the structure of an GL_pos 2 ℝ
action by
fractional linear transformations.
We define the notation ℍ
for the upper half plane available in the locale
upper_half_plane
so as not to conflict with the quaternions.
The open upper half plane
Equations
- upper_half_plane = {point // 0 < point.im}
Instances for upper_half_plane
- slash_invariant_form_class.to_fun_like
- upper_half_plane.has_coe
- upper_half_plane.inhabited
- upper_half_plane.can_lift
- upper_half_plane.mul_action
- upper_half_plane.SL_action
- upper_half_plane.SL_to_GL_tower
- upper_half_plane.subgroup_on_GL_pos
- upper_half_plane.subgroup_to_SL_tower
- upper_half_plane.pos_real_action
- upper_half_plane.add_action
- upper_half_plane.topological_space
- upper_half_plane.topological_space.second_countable_topology
- upper_half_plane.t3_space
- upper_half_plane.normal_space
- upper_half_plane.contractible_space
- upper_half_plane.loc_path_connected_space
- upper_half_plane.noncompact_space
- upper_half_plane.locally_compact_space
- upper_half_plane.charted_space
- upper_half_plane.smooth_manifold_with_corners
- upper_half_plane.has_dist
- upper_half_plane.metric_space
- upper_half_plane.proper_space
- upper_half_plane.has_isometric_smul
Equations
- upper_half_plane.can_lift = subtype.can_lift (λ (z : ℂ), 0 < z.im)
Constructor for upper_half_plane
. It is useful if ⟨z, h⟩
makes Lean use a wrong
typeclass instance.
Equations
- upper_half_plane.mk z h = ⟨z, h⟩
Numerator of the formula for a fractional linear transformation
Denominator of the formula for a fractional linear transformation
Fractional linear transformation, also known as the Moebius transformation
Equations
Fractional linear transformation, also known as the Moebius transformation
Equations
- upper_half_plane.smul_aux g z = ⟨upper_half_plane.smul_aux' g z, _⟩
The action of GL_pos 2 ℝ
on the upper half-plane by fractional linear transformations.
Equations
- upper_half_plane.mul_action = {to_has_smul := {smul := upper_half_plane.smul_aux}, one_smul := upper_half_plane.mul_action._proof_1, mul_smul := upper_half_plane.mul_smul'}
Equations
- upper_half_plane.matrix.GL_pos.has_coe = {coe := λ (g : matrix.special_linear_group (fin 2) ℤ), ↑↑g}
Equations
- upper_half_plane.SL_on_GL_pos = {smul := λ (s : matrix.special_linear_group (fin 2) ℤ) (g : ↥(matrix.GL_pos (fin 2) ℝ)), ↑s * g}
Equations
- upper_half_plane.subgroup_SL Γ = {smul := λ (s : ↥Γ) (g : matrix.special_linear_group (fin 2) ℤ), ↑s * g}
Equations
- upper_half_plane.pos_real_action = {to_has_smul := {smul := λ (x : {x // 0 < x}) (z : upper_half_plane), upper_half_plane.mk (↑x • ↑z) _}, one_smul := upper_half_plane.pos_real_action._proof_2, mul_smul := upper_half_plane.pos_real_action._proof_3}
Equations
- upper_half_plane.add_action = {to_has_vadd := {vadd := λ (x : ℝ) (z : upper_half_plane), upper_half_plane.mk (↑x + ↑z) _}, zero_vadd := upper_half_plane.add_action._proof_2, add_vadd := upper_half_plane.add_action._proof_3}