Closure, interior, and frontier of preimages under re
and im
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this fact we use the fact that ℂ
is naturally homeomorphic to ℝ × ℝ
to deduce some
topological properties of complex.re
and complex.im
.
Main statements #
Each statement about complex.re
listed below has a counterpart about complex.im
.
complex.is_homeomorphic_trivial_fiber_bundle_re
:complex.re
turnsℂ
into a trivial topological fiber bundle overℝ
;complex.is_open_map_re
,complex.quotient_map_re
: in particular,complex.re
is an open map and is a quotient map;complex.interior_preimage_re
,complex.closure_preimage_re
,complex.frontier_preimage_re
: formulas forinterior (complex.re ⁻¹' s)
etc;complex.interior_set_of_re_le
etc: particular cases of the above formulas in the cases whens
is one of the infinite intervalsset.Ioi a
,set.Ici a
,set.Iio a
, andset.Iic a
, formulated asinterior {z : ℂ | z.re ≤ a} = {z | z.re < a}
etc.
Tags #
complex, real part, imaginary part, closure, interior, frontier
complex.re
turns ℂ
into a trivial topological fiber bundle over ℝ
.
complex.im
turns ℂ
into a trivial topological fiber bundle over ℝ
.
theorem
complex.interior_preimage_re
(s : set ℝ) :
interior (complex.re ⁻¹' s) = complex.re ⁻¹' interior s
theorem
complex.interior_preimage_im
(s : set ℝ) :
interior (complex.im ⁻¹' s) = complex.im ⁻¹' interior s
theorem
complex.closure_preimage_re
(s : set ℝ) :
closure (complex.re ⁻¹' s) = complex.re ⁻¹' closure s
theorem
complex.closure_preimage_im
(s : set ℝ) :
closure (complex.im ⁻¹' s) = complex.im ⁻¹' closure s
theorem
complex.frontier_preimage_re
(s : set ℝ) :
frontier (complex.re ⁻¹' s) = complex.re ⁻¹' frontier s
theorem
complex.frontier_preimage_im
(s : set ℝ) :
frontier (complex.im ⁻¹' s) = complex.im ⁻¹' frontier s
theorem
metric.bounded.re_prod_im
{s t : set ℝ}
(hs : metric.bounded s)
(ht : metric.bounded t) :
metric.bounded (s ×ℂ t)