mathlib3 documentation

analysis.convex.proj_Icc

Convexity of extension from intervals #

This file proves that constantly extending monotone/antitone functions preserves their convexity.

TODO #

We could deduplicate the proofs if we had a typeclass stating that segment π•œ x y = [x -[π•œ] y] as π•œα΅’α΅ˆ respects it if π•œ does, while π•œα΅’α΅ˆ isn't a linear_ordered_field if π•œ is.

@[protected]
theorem convex.Ici_extend {π•œ : Type u_1} [linear_ordered_field π•œ] {s : set π•œ} {z : π•œ} (hf : convex π•œ s) :
convex π•œ {x : π•œ | set.Ici_extend ((set.Ici z).restrict (Ξ» (_x : π•œ), _x ∈ s)) x}

A convex set extended towards minus infinity is convex.

@[protected]
theorem convex.Iic_extend {π•œ : Type u_1} [linear_ordered_field π•œ] {s : set π•œ} {z : π•œ} (hf : convex π•œ s) :
convex π•œ {x : π•œ | set.Iic_extend ((set.Iic z).restrict (Ξ» (_x : π•œ), _x ∈ s)) x}

A convex set extended towards infinity is convex.

@[protected]
theorem convex_on.Ici_extend {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {s : set π•œ} {f : π•œ β†’ Ξ²} {z : π•œ} (hf : convex_on π•œ s f) (hf' : monotone_on f s) :
convex_on π•œ {x : π•œ | set.Ici_extend ((set.Ici z).restrict (Ξ» (_x : π•œ), _x ∈ s)) x} (set.Ici_extend ((set.Ici z).restrict f))

A convex monotone function extended constantly towards minus infinity is convex.

@[protected]
theorem convex_on.Iic_extend {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {s : set π•œ} {f : π•œ β†’ Ξ²} {z : π•œ} (hf : convex_on π•œ s f) (hf' : antitone_on f s) :
convex_on π•œ {x : π•œ | set.Iic_extend ((set.Iic z).restrict (Ξ» (_x : π•œ), _x ∈ s)) x} (set.Iic_extend ((set.Iic z).restrict f))

A convex antitone function extended constantly towards infinity is convex.

@[protected]
theorem concave_on.Ici_extend {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {s : set π•œ} {f : π•œ β†’ Ξ²} {z : π•œ} (hf : concave_on π•œ s f) (hf' : antitone_on f s) :
concave_on π•œ {x : π•œ | set.Ici_extend ((set.Ici z).restrict (Ξ» (_x : π•œ), _x ∈ s)) x} (set.Ici_extend ((set.Ici z).restrict f))

A concave antitone function extended constantly minus towards infinity is concave.

@[protected]
theorem concave_on.Iic_extend {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {s : set π•œ} {f : π•œ β†’ Ξ²} {z : π•œ} (hf : concave_on π•œ s f) (hf' : monotone_on f s) :
concave_on π•œ {x : π•œ | set.Iic_extend ((set.Iic z).restrict (Ξ» (_x : π•œ), _x ∈ s)) x} (set.Iic_extend ((set.Iic z).restrict f))

A concave monotone function extended constantly towards infinity is concave.

@[protected]
theorem convex_on.Ici_extend_of_monotone {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {f : π•œ β†’ Ξ²} {z : π•œ} (hf : convex_on π•œ set.univ f) (hf' : monotone f) :

A convex monotone function extended constantly towards minus infinity is convex.

@[protected]
theorem convex_on.Iic_extend_of_antitone {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {f : π•œ β†’ Ξ²} {z : π•œ} (hf : convex_on π•œ set.univ f) (hf' : antitone f) :

A convex antitone function extended constantly towards infinity is convex.

@[protected]
theorem concave_on.Ici_extend_of_antitone {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {f : π•œ β†’ Ξ²} {z : π•œ} (hf : concave_on π•œ set.univ f) (hf' : antitone f) :

A concave antitone function extended constantly minus towards infinity is concave.

@[protected]
theorem concave_on.Iic_extend_of_monotone {π•œ : Type u_1} {Ξ² : Type u_2} [linear_ordered_field π•œ] [linear_ordered_add_comm_monoid Ξ²] [has_smul π•œ Ξ²] {f : π•œ β†’ Ξ²} {z : π•œ} (hf : concave_on π•œ set.univ f) (hf' : monotone f) :

A concave monotone function extended constantly towards infinity is concave.