mathlib3 documentation

mathlib-archive / wiedijk_100_theorems.abel_ruffini

Construction of an algebraic number that is not solvable by radicals. #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

The main ingredients are:

Then all that remains is the construction of a specific polynomial satisfying the conditions of gal_action_hom_bijective_of_prime_degree', which is done in this file.

noncomputable def abel_ruffini.Φ (R : Type u_1) [comm_ring R] (a b : ) :

A quintic polynomial that we will show is irreducible

Equations
@[simp]
theorem abel_ruffini.map_Phi {R : Type u_1} [comm_ring R] (a b : ) {S : Type u_2} [comm_ring S] (f : R →+* S) :
@[simp]
theorem abel_ruffini.coeff_zero_Phi {R : Type u_1} [comm_ring R] (a b : ) :
@[simp]
theorem abel_ruffini.coeff_five_Phi {R : Type u_1} [comm_ring R] (a b : ) :
(abel_ruffini.Φ R a b).coeff 5 = 1
theorem abel_ruffini.degree_Phi {R : Type u_1} [comm_ring R] (a b : ) [nontrivial R] :
theorem abel_ruffini.nat_degree_Phi {R : Type u_1} [comm_ring R] (a b : ) [nontrivial R] :
theorem abel_ruffini.monic_Phi {R : Type u_1} [comm_ring R] (a b : ) [nontrivial R] :
theorem abel_ruffini.irreducible_Phi (a b p : ) (hp : nat.prime p) (hpa : p a) (hpb : p b) (hp2b : ¬p ^ 2 b) :
theorem abel_ruffini.not_solvable_by_rad (a b p : ) (x : ) (hx : (polynomial.aeval x) (abel_ruffini.Φ a b) = 0) (hab : b < a) (hp : nat.prime p) (hpa : p a) (hpb : p b) (hp2b : ¬p ^ 2 b) :