Subsheaf of types #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We define the sub(pre)sheaf of a type valued presheaf.
Main results #
category_theory.grothendieck_topology.subpresheaf
: A subpresheaf of a presheaf of types.category_theory.grothendieck_topology.subpresheaf.sheafify
: The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole sheaf is.category_theory.grothendieck_topology.subpresheaf.sheafify_is_sheaf
: The sheafification is a sheafcategory_theory.grothendieck_topology.subpresheaf.sheafify_lift
: The descent of a map into a sheaf to the sheafification.category_theory.grothendieck_topology.image_sheaf
: The image sheaf of a morphism.category_theory.grothendieck_topology.image_factorization
: The image sheaf as alimits.image_factorization
.
- obj : Π (U : Cᵒᵖ), set (F.obj U)
- map : ∀ {U V : Cᵒᵖ} (i : U ⟶ V), self.obj U ⊆ F.map i ⁻¹' self.obj V
A subpresheaf of a presheaf consists of a subset of F.obj U
for every U
,
compatible with the restriction maps F.map i
.
Instances for category_theory.grothendieck_topology.subpresheaf
- category_theory.grothendieck_topology.subpresheaf.has_sizeof_inst
- category_theory.grothendieck_topology.subpresheaf.partial_order
- category_theory.grothendieck_topology.subpresheaf.has_top
- category_theory.grothendieck_topology.subpresheaf.nonempty
The subpresheaf as a presheaf.
The inclusion of a subpresheaf to the original presheaf.
Equations
- G.ι = {app := λ (U : Cᵒᵖ) (x : G.to_presheaf.obj U), ↑x, naturality' := _}
Instances for category_theory.grothendieck_topology.subpresheaf.ι
The inclusion of a subpresheaf to a larger subpresheaf
Equations
- category_theory.grothendieck_topology.subpresheaf.hom_of_le h = {app := λ (U : Cᵒᵖ) (x : G.to_presheaf.obj U), ⟨↑x, _⟩, naturality' := _}
Instances for category_theory.grothendieck_topology.subpresheaf.hom_of_le
If the image of a morphism falls in a subpresheaf, then the morphism factors through it.
Given a subpresheaf G
of F
, an F
-section s
on U
, we may define a sieve of U
consisting of all f : V ⟶ U
such that the restriction of s
along f
is in G
.
Equations
- G.sieve_of_section s = {arrows := λ (V : C) (f : V ⟶ opposite.unop U), F.map f.op s ∈ G.obj (opposite.op V), downward_closed' := _}
Given a F
-section s
on U
and a subpresheaf G
, we may define a family of elements in
G
consisting of the restrictions of s
Equations
- G.family_of_elements_of_section s = λ (V : C) (i : V ⟶ opposite.unop U) (hi : (G.sieve_of_section s).arrows i), ⟨F.map i.op s, hi⟩
The sheafification of a subpresheaf as a subpresheaf. Note that this is a sheaf only when the whole presheaf is a sheaf.
Equations
- category_theory.grothendieck_topology.subpresheaf.sheafify J G = {obj := λ (U : Cᵒᵖ), {s : F.obj U | G.sieve_of_section s ∈ ⇑J (opposite.unop U)}, map := _}
The lift of a presheaf morphism onto the sheafification subpresheaf.
Equations
- G.sheafify_lift f h = {app := λ (U : Cᵒᵖ) (s : (category_theory.grothendieck_topology.subpresheaf.sheafify J G).to_presheaf.obj U), _.amalgamate (category_theory.presieve.family_of_elements.comp_presheaf_map f (G.family_of_elements_of_section ↑s)) _, naturality' := _}
The image presheaf of a morphism, whose components are the set-theoretic images.
A morphism factors through the image presheaf.
Equations
Instances for category_theory.grothendieck_topology.to_image_presheaf
A morphism factors through the sheafification of the image presheaf.
The image sheaf of a morphism between sheaves, defined to be the sheafification of
image_presheaf
.
A morphism factors through the image sheaf.
Equations
Instances for category_theory.grothendieck_topology.to_image_sheaf
The inclusion of the image sheaf to the target.
Equations
Instances for category_theory.grothendieck_topology.image_sheaf_ι
The mono factorization given by image_sheaf
for a morphism.
The mono factorization given by image_sheaf
for a morphism is an image.
Equations
- category_theory.grothendieck_topology.image_factorization f = {F := category_theory.grothendieck_topology.image_mono_factorization f, is_image := {lift := λ (I : category_theory.limits.mono_factorisation f), {val := category_theory.grothendieck_topology.subpresheaf.hom_of_le _ ≫ category_theory.inv (category_theory.grothendieck_topology.to_image_presheaf I.m.val)}, lift_fac' := _}}