Group structure on the order type synonyms #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Transfer algebraic instances from α
to αᵒᵈ
and lex α
.
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[simp]
theorem
to_dual_mul
{α : Type u_1}
[has_mul α]
(a b : α) :
⇑order_dual.to_dual (a * b) = ⇑order_dual.to_dual a * ⇑order_dual.to_dual b
@[simp]
theorem
to_dual_add
{α : Type u_1}
[has_add α]
(a b : α) :
⇑order_dual.to_dual (a + b) = ⇑order_dual.to_dual a + ⇑order_dual.to_dual b
@[simp]
theorem
of_dual_mul
{α : Type u_1}
[has_mul α]
(a b : αᵒᵈ) :
⇑order_dual.of_dual (a * b) = ⇑order_dual.of_dual a * ⇑order_dual.of_dual b
@[simp]
theorem
of_dual_add
{α : Type u_1}
[has_add α]
(a b : αᵒᵈ) :
⇑order_dual.of_dual (a + b) = ⇑order_dual.of_dual a + ⇑order_dual.of_dual b
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
to_dual_div
{α : Type u_1}
[has_div α]
(a b : α) :
⇑order_dual.to_dual (a / b) = ⇑order_dual.to_dual a / ⇑order_dual.to_dual b
@[simp]
theorem
to_dual_sub
{α : Type u_1}
[has_sub α]
(a b : α) :
⇑order_dual.to_dual (a - b) = ⇑order_dual.to_dual a - ⇑order_dual.to_dual b
@[simp]
theorem
of_dual_sub
{α : Type u_1}
[has_sub α]
(a b : αᵒᵈ) :
⇑order_dual.of_dual (a - b) = ⇑order_dual.of_dual a - ⇑order_dual.of_dual b
@[simp]
theorem
of_dual_div
{α : Type u_1}
[has_div α]
(a b : αᵒᵈ) :
⇑order_dual.of_dual (a / b) = ⇑order_dual.of_dual a / ⇑order_dual.of_dual b
@[simp]
theorem
to_dual_vadd
{α : Type u_1}
{β : Type u_2}
[has_vadd α β]
(a : α)
(b : β) :
⇑order_dual.to_dual (a +ᵥ b) = a +ᵥ ⇑order_dual.to_dual b
@[simp]
theorem
to_dual_smul
{α : Type u_1}
{β : Type u_2}
[has_smul α β]
(a : α)
(b : β) :
⇑order_dual.to_dual (a • b) = a • ⇑order_dual.to_dual b
@[simp]
theorem
of_dual_smul
{α : Type u_1}
{β : Type u_2}
[has_smul α β]
(a : α)
(b : βᵒᵈ) :
⇑order_dual.of_dual (a • b) = a • ⇑order_dual.of_dual b
@[simp]
theorem
of_dual_vadd
{α : Type u_1}
{β : Type u_2}
[has_vadd α β]
(a : α)
(b : βᵒᵈ) :
⇑order_dual.of_dual (a +ᵥ b) = a +ᵥ ⇑order_dual.of_dual b
@[simp]
theorem
to_dual_vadd'
{α : Type u_1}
{β : Type u_2}
[has_vadd α β]
(a : α)
(b : β) :
⇑order_dual.to_dual a +ᵥ b = a +ᵥ b
@[simp]
theorem
to_dual_smul'
{α : Type u_1}
{β : Type u_2}
[has_smul α β]
(a : α)
(b : β) :
⇑order_dual.to_dual a • b = a • b
@[simp]
theorem
to_dual_pow
{α : Type u_1}
{β : Type u_2}
[has_pow α β]
(a : α)
(b : β) :
⇑order_dual.to_dual (a ^ b) = ⇑order_dual.to_dual a ^ b
@[simp]
theorem
of_dual_pow
{α : Type u_1}
{β : Type u_2}
[has_pow α β]
(a : αᵒᵈ)
(b : β) :
⇑order_dual.of_dual (a ^ b) = ⇑order_dual.of_dual a ^ b
@[simp]
theorem
pow_to_dual
{α : Type u_1}
{β : Type u_2}
[has_pow α β]
(a : α)
(b : β) :
a ^ ⇑order_dual.to_dual b = a ^ b
Lexicographical order #
@[protected, instance]
Equations
- lex.has_one = h
@[protected, instance]
Equations
@[protected, instance]
Equations
- lex.has_add = h
@[protected, instance]
Equations
- lex.has_mul = h
@[protected, instance]
Equations
- lex.has_inv = h
@[protected, instance]
Equations
- lex.has_neg = h
@[protected, instance]
Equations
- lex.has_div = h
@[protected, instance]
Equations
- lex.has_sub = h
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
- lex.has_pow = h
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
- lex.monoid = h
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]