THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we show that an adjunction F ⊣ G
induces an adjunction between
categories of sheaves, under certain hypotheses on F
and G
.
The forgetful functor from Sheaf J D
to sheaves of types, for a concrete category D
whose forgetful functor preserves the correct limits.
This is the functor sending a sheaf X : Sheaf J E
to the sheafification
of X ⋙ G
.
An auxiliary definition to be used in defining category_theory.Sheaf.adjunction
below.
Equations
- category_theory.Sheaf.compose_equiv J adj X Y = let A : (category_theory.whiskering_right Cᵒᵖ E D).obj G ⊣ (category_theory.whiskering_right Cᵒᵖ D E).obj F := category_theory.adjunction.whisker_right Cᵒᵖ adj in {to_fun := λ (η : (category_theory.Sheaf.compose_and_sheafify J G).obj X ⟶ Y), {val := ⇑(A.hom_equiv ((category_theory.Sheaf_to_presheaf J E).obj X) Y.val) (J.to_sheafify (((category_theory.whiskering_right Cᵒᵖ E D).obj G).obj ((category_theory.Sheaf_to_presheaf J E).obj X)) ≫ η.val)}, inv_fun := λ (γ : X ⟶ (category_theory.Sheaf_compose J F).obj Y), {val := J.sheafify_lift (⇑((A.hom_equiv ((category_theory.Sheaf_to_presheaf J E).obj X) Y.val).symm) ((category_theory.Sheaf_to_presheaf J E).map γ)) _}, left_inv := _, right_inv := _}
An adjunction adj : G ⊣ F
with F : D ⥤ E
and G : E ⥤ D
induces an adjunction
between Sheaf J D
and Sheaf J E
, in contexts where one can sheafify D
-valued presheaves,
and F
preserves the correct limits.
This is the functor sending a sheaf of types X
to the sheafification of X ⋙ G
.
A variant of the adjunction between sheaf categories, in the case where the right adjoint is the forgetful functor to sheaves of types.
Equations
Equations
- category_theory.Sheaf.category_theory.Sheaf_forget.category_theory.is_right_adjoint J = {left := category_theory.Sheaf.compose_and_sheafify_from_types J (category_theory.left_adjoint (category_theory.forget D)), adj := category_theory.Sheaf.adjunction_to_types J (category_theory.adjunction.of_right_adjoint (category_theory.forget D))}