F-isocrystals over a perfect field #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
When k
is an integral domain, so is 𝕎 k
, and we can consider its field of fractions K(p, k)
.
The endomorphism witt_vector.frobenius
lifts to φ : K(p, k) → K(p, k)
; if k
is perfect, φ
is
an automorphism.
Let k
be a perfect integral domain. Let V
be a vector space over K(p,k)
.
An isocrystal is a bijective map V → V
that is φ
-semilinear.
A theorem of Dieudonné and Manin classifies the finite-dimensional isocrystals over algebraically
closed fields. In the one-dimensional case, this classification states that the isocrystal
structures are parametrized by their "slope" m : ℤ
.
Any one-dimensional isocrystal is isomorphic to φ(p^m • x) : K(p,k) → K(p,k)
for some m
.
This file proves this one-dimensional case of the classification theorem. The construction is described in Dupuis, Lewis, and Macbeth, Formalized functional analysis via semilinear maps.
Main declarations #
witt_vector.isocrystal
: a vector space over the fieldK(p, k)
additionally equipped with a Frobenius-linear automorphism.witt_vector.isocrystal_classification
: a one-dimensional isocrystal admits an isomorphism to one of the standard one-dimensional isocrystals.
Notation #
This file introduces notation in the locale isocrystal
.
K(p, k)
:fraction_ring (witt_vector p k)
φ(p, k)
:witt_vector.fraction_ring.frobenius_ring_hom p k
M →ᶠˡ[p, k] M₂
:linear_map (witt_vector.fraction_ring.frobenius_ring_hom p k) M M₂
M ≃ᶠˡ[p, k] M₂
:linear_equiv (witt_vector.fraction_ring.frobenius_ring_hom p k) M M₂
Φ(p, k)
:witt_vector.isocrystal.frobenius p k
M →ᶠⁱ[p, k] M₂
:witt_vector.isocrystal_hom p k M M₂
M ≃ᶠⁱ[p, k] M₂
:witt_vector.isocrystal_equiv p k M M₂
References #
Frobenius-linear maps #
The Frobenius automorphism of k
induces an automorphism of K
.
The Frobenius automorphism of k
induces an endomorphism of K
. For notation purposes.
Equations
Instances for witt_vector.fraction_ring.frobenius_ring_hom
Isocrystals #
- to_module : module (fraction_ring (witt_vector p k)) V
- frob : V ≃ₛₗ[witt_vector.fraction_ring.frobenius_ring_hom p k] V
An isocrystal is a vector space over the field K(p, k)
additionally equipped with a
Frobenius-linear automorphism.
Instances of this typeclass
Instances of other typeclasses for witt_vector.isocrystal
- witt_vector.isocrystal.has_sizeof_inst
Project the Frobenius automorphism from an isocrystal. Denoted by Φ(p, k)
when V can be inferred.
Equations
- to_linear_map : V →ₗ[fraction_ring (witt_vector p k)] V₂
- frob_equivariant : ∀ (x : V), ⇑(witt_vector.isocrystal.frobenius p k) (⇑(self.to_linear_map) x) = ⇑(self.to_linear_map) (⇑(witt_vector.isocrystal.frobenius p k) x)
A homomorphism between isocrystals respects the Frobenius map.
Instances for witt_vector.isocrystal_hom
- witt_vector.isocrystal_hom.has_sizeof_inst
- to_linear_equiv : V ≃ₗ[fraction_ring (witt_vector p k)] V₂
- frob_equivariant : ∀ (x : V), ⇑(witt_vector.isocrystal.frobenius p k) (⇑(self.to_linear_equiv) x) = ⇑(self.to_linear_equiv) (⇑(witt_vector.isocrystal.frobenius p k) x)
An isomorphism between isocrystals respects the Frobenius map.
Instances for witt_vector.isocrystal_equiv
- witt_vector.isocrystal_equiv.has_sizeof_inst
Classification of isocrystals in dimension 1 #
A helper instance for type class inference.
Equations
The standard one-dimensional isocrystal of slope m : ℤ
is an isocrystal.
Equations
- witt_vector.standard_one_dim_isocrystal.isocrystal p k m = {to_module := semiring.to_module ring.to_semiring, frob := (witt_vector.fraction_ring.frobenius p k).to_semilinear_equiv.trans (linear_equiv.smul_of_ne_zero (fraction_ring (witt_vector p k)) (fraction_ring (witt_vector p k)) (↑p ^ m) _)}
A one-dimensional isocrystal over an algebraically closed field
admits an isomorphism to one of the standard (indexed by m : ℤ
) one-dimensional isocrystals.