Multiplication by a nonzero element in a group_with_zero
is a permutation. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[simp]
theorem
equiv.mul_left₀_apply
{G : Type u_1}
[group_with_zero G]
(a : G)
(ha : a ≠ 0) :
⇑(equiv.mul_left₀ a ha) = has_mul.mul a
@[simp]
theorem
equiv.mul_left₀_symm_apply
{G : Type u_1}
[group_with_zero G]
(a : G)
(ha : a ≠ 0) :
⇑(equiv.symm (equiv.mul_left₀ a ha)) = has_mul.mul ↑(units.mk0 a ha)⁻¹
@[protected]
Left multiplication by a nonzero element in a group_with_zero
is a permutation of the
underlying type.
Equations
- equiv.mul_left₀ a ha = (units.mk0 a ha).mul_left
@[simp]
theorem
equiv.mul_right₀_apply
{G : Type u_1}
[group_with_zero G]
(a : G)
(ha : a ≠ 0) :
⇑(equiv.mul_right₀ a ha) = λ (x : G), x * a
@[simp]
theorem
equiv.mul_right₀_symm_apply
{G : Type u_1}
[group_with_zero G]
(a : G)
(ha : a ≠ 0) :
⇑(equiv.symm (equiv.mul_right₀ a ha)) = λ (x : G), x * ↑(units.mk0 a ha)⁻¹
@[protected]
Right multiplication by a nonzero element in a group_with_zero
is a permutation of the
underlying type.
Equations
- equiv.mul_right₀ a ha = (units.mk0 a ha).mul_right
theorem
mul_right_bijective₀
{G : Type u_1}
[group_with_zero G]
(a : G)
(ha : a ≠ 0) :
function.bijective (λ (_x : G), _x * a)