Weak Dual in Topological Vector Spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We prove that the weak topology induced by a bilinear form B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜
is locally
convex and we explicit give a neighborhood basis in terms of the family of seminorms λ x, ‖B x y‖
for y : F
.
Main definitions #
linear_map.to_seminorm
: turn a linear formf : E →ₗ[𝕜] 𝕜
into a seminormλ x, ‖f x‖
.linear_map.to_seminorm_family
: turn a bilinear formB : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜
into a mapF → seminorm 𝕜 E
.
Main statements #
linear_map.has_basis_weak_bilin
: the seminorm balls ofB.to_seminorm_family
form a neighborhood basis of0
in the weak topology.linear_map.to_seminorm_family.with_seminorms
: the topology of a weak space is induced by the family of seminormB.to_seminorm_family
.weak_bilin.locally_convex_space
: a spaced endowed with a weak topology is locally convex.
References #
Tags #
weak dual, seminorm
def
linear_map.to_seminorm
{𝕜 : Type u_1}
{E : Type u_2}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
(f : E →ₗ[𝕜] 𝕜) :
seminorm 𝕜 E
Construct a seminorm from a linear form f : E →ₗ[𝕜] 𝕜
over a normed field 𝕜
by
λ x, ‖f x‖
Equations
- f.to_seminorm = (norm_seminorm 𝕜 𝕜).comp f
theorem
linear_map.coe_to_seminorm
{𝕜 : Type u_1}
{E : Type u_2}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
{f : E →ₗ[𝕜] 𝕜} :
@[simp]
theorem
linear_map.to_seminorm_apply
{𝕜 : Type u_1}
{E : Type u_2}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
{f : E →ₗ[𝕜] 𝕜}
{x : E} :
theorem
linear_map.to_seminorm_ball_zero
{𝕜 : Type u_1}
{E : Type u_2}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
{f : E →ₗ[𝕜] 𝕜}
{r : ℝ} :
theorem
linear_map.to_seminorm_comp
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
[add_comm_group F]
[module 𝕜 F]
(f : F →ₗ[𝕜] 𝕜)
(g : E →ₗ[𝕜] F) :
f.to_seminorm.comp g = (f.comp g).to_seminorm
def
linear_map.to_seminorm_family
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
[add_comm_group F]
[module 𝕜 F]
(B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) :
seminorm_family 𝕜 E F
Construct a family of seminorms from a bilinear form.
Equations
- B.to_seminorm_family = λ (y : F), (⇑(B.flip) y).to_seminorm
@[simp]
theorem
linear_map.to_seminorm_family_apply
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
[add_comm_group F]
[module 𝕜 F]
{B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜}
{x : E}
{y : F} :
theorem
linear_map.has_basis_weak_bilin
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
[add_comm_group F]
[module 𝕜 F]
(B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) :
theorem
linear_map.weak_bilin_with_seminorms
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
[add_comm_group F]
[module 𝕜 F]
(B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜) :
@[protected, instance]
def
weak_bilin.locally_convex_space
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[normed_field 𝕜]
[add_comm_group E]
[module 𝕜 E]
[add_comm_group F]
[module 𝕜 F]
[normed_space ℝ 𝕜]
[module ℝ E]
[is_scalar_tower ℝ 𝕜 E]
{B : E →ₗ[𝕜] F →ₗ[𝕜] 𝕜} :