The category of finite partial orders #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines FinPartOrd
, the category of finite partial orders.
Note: FinPartOrd
is not a subcategory of BddOrd
because finite orders are not necessarily
bounded.
TODO #
FinPartOrd
is equivalent to a small category.
- to_PartOrd : PartOrd
- is_fintype : fintype ↥(self.to_PartOrd)
The category of finite partial orders with monotone functions.
Instances for FinPartOrd
- FinPartOrd.has_sizeof_inst
- FinPartOrd.has_coe_to_sort
- FinPartOrd.inhabited
- FinPartOrd.large_category
- FinPartOrd.concrete_category
- FinPartOrd.has_forget_to_PartOrd
- FinPartOrd.has_forget_to_Fintype
- NonemptyFinLinOrd.has_forget_to_FinPartOrd
- FinBddDistLat.has_forget_to_FinPartOrd
- FinBoolAlg.has_forget_to_FinPartOrd
@[protected, instance]
Equations
- FinPartOrd.has_coe_to_sort = {coe := λ (X : FinPartOrd), ↥(X.to_PartOrd)}
@[protected, instance]
Equations
- X.partial_order = X.to_PartOrd.str
Construct a bundled FinPartOrd
from fintype
+ partial_order
.
Equations
- FinPartOrd.of α = FinPartOrd.mk {α := α, str := _inst_1}
@[simp]
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
Equations
- FinPartOrd.has_forget_to_Fintype = {forget₂ := {obj := λ (X : FinPartOrd), {α := ↥X, str := X.is_fintype}, map := λ (X Y : FinPartOrd), coe_fn, map_id' := FinPartOrd.has_forget_to_Fintype._proof_1, map_comp' := FinPartOrd.has_forget_to_Fintype._proof_2}, forget_comp := FinPartOrd.has_forget_to_Fintype._proof_3}
@[simp]
@[simp]
theorem
FinPartOrd.iso.mk_inv
{α β : FinPartOrd}
(e : ↥α ≃o ↥β) :
(FinPartOrd.iso.mk e).inv = ↑(e.symm)
Constructs an isomorphism of finite partial orders from an order isomorphism between them.
Equations
- FinPartOrd.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
@[simp]
order_dual
as a functor.
Equations
- FinPartOrd.dual = {obj := λ (X : FinPartOrd), FinPartOrd.of (↥X)ᵒᵈ, map := λ (X Y : FinPartOrd), ⇑order_hom.dual, map_id' := FinPartOrd.dual._proof_1, map_comp' := FinPartOrd.dual._proof_2}
The equivalence between FinPartOrd
and itself induced by order_dual
both ways.
Equations
- FinPartOrd.dual_equiv = category_theory.equivalence.mk FinPartOrd.dual FinPartOrd.dual (category_theory.nat_iso.of_components (λ (X : FinPartOrd), FinPartOrd.iso.mk (order_iso.dual_dual ↥X)) FinPartOrd.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : FinPartOrd), FinPartOrd.iso.mk (order_iso.dual_dual ↥X)) FinPartOrd.dual_equiv._proof_2)
@[simp]
@[simp]