Standard constructions on fiber bundles #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains several standard constructions on fiber bundles:
-
bundle.trivial.fiber_bundle 𝕜 B F
: the trivial fiber bundle with model fiberF
over the baseB
-
fiber_bundle.prod
: for fiber bundlesE₁
andE₂
over a common base, a fiber bundle structure on their fiberwise productE₁ ×ᵇ E₂
(the notation stands forλ x, E₁ x × E₂ x
). -
fiber_bundle.pullback
: for a fiber bundleE
overB
, a fiber bundle structure on its pullbackf *ᵖ E
by a mapf : B' → B
(the notation is a type synonym forE ∘ f
).
Tags #
fiber bundle, fibre bundle, fiberwise product, pullback
The trivial bundle #
Local trivialization for trivial bundle.
Equations
- bundle.trivial.trivialization B F = {to_local_homeomorph := {to_local_equiv := {to_fun := λ (x : bundle.total_space F (λ (_x : B), F)), (x.proj, x.snd), inv_fun := λ (y : B × F), {proj := y.fst, snd := y.snd}, source := set.univ (bundle.total_space F (λ (_x : B), F)), target := set.univ (B × F), map_source' := _, map_target' := _, left_inv' := _, right_inv' := _}, open_source := _, open_target := _, continuous_to_fun := _, continuous_inv_fun := _}, base_set := set.univ B, open_base_set := _, source_eq := _, target_eq := _, proj_to_fun := _}
Instances for bundle.trivial.trivialization
Fiber bundle instance on the trivial bundle.
Equations
- bundle.trivial.fiber_bundle B F = {total_space_mk_inducing := _, trivialization_atlas := {bundle.trivial.trivialization B F}, trivialization_at := λ (x : B), bundle.trivial.trivialization B F, mem_base_set_trivialization_at := _, trivialization_mem_atlas := _}
Fibrewise product of two bundles #
Equip the total space of the fiberwise product of two fiber bundles E₁
, E₂
with
the induced topology from the diagonal embedding into total_space E₁ × total_space E₂
.
Equations
- fiber_bundle.prod.topological_space F₁ E₁ F₂ E₂ = topological_space.induced (λ (p : bundle.total_space (F₁ × F₂) (λ (x : B), E₁ x × E₂ x)), ({proj := p.proj, snd := p.snd.fst}, {proj := p.proj, snd := p.snd.snd})) prod.topological_space
The diagonal map from the total space of the fiberwise product of two fiber bundles
E₁
, E₂
into total_space E₁ × total_space E₂
is inducing
.
Given trivializations e₁
, e₂
for fiber bundles E₁
, E₂
over a base B
, the forward
function for the construction trivialization.prod
, the induced
trivialization for the fiberwise product of E₁
and E₂
.
Given trivializations e₁
, e₂
for fiber bundles E₁
, E₂
over a base B
, the inverse
function for the construction trivialization.prod
, the induced
trivialization for the fiberwise product of E₁
and E₂
.
Given trivializations e₁
, e₂
for bundle types E₁
, E₂
over a base B
, the induced
trivialization for the fiberwise product of E₁
and E₂
, whose base set is
e₁.base_set ∩ e₂.base_set
.
Equations
- e₁.prod e₂ = {to_local_homeomorph := {to_local_equiv := {to_fun := trivialization.prod.to_fun' e₁ e₂, inv_fun := trivialization.prod.inv_fun' e₁ e₂ (λ (x : B), _inst_7 x), source := bundle.total_space.proj ⁻¹' (e₁.base_set ∩ e₂.base_set), target := (e₁.base_set ∩ e₂.base_set) ×ˢ set.univ, map_source' := _, map_target' := _, left_inv' := _, right_inv' := _}, open_source := _, open_target := _, continuous_to_fun := _, continuous_inv_fun := _}, base_set := e₁.base_set ∩ e₂.base_set, open_base_set := _, source_eq := _, target_eq := _, proj_to_fun := _}
Instances for trivialization.prod
The product of two fiber bundles is a fiber bundle.
Equations
- fiber_bundle.prod F₁ E₁ F₂ E₂ = {total_space_mk_inducing := _, trivialization_atlas := {e : trivialization (F₁ × F₂) bundle.total_space.proj | ∃ (e₁ : trivialization F₁ bundle.total_space.proj) (e₂ : trivialization F₂ bundle.total_space.proj) [_inst_12 : mem_trivialization_atlas e₁] [_inst_13 : mem_trivialization_atlas e₂], e = e₁.prod e₂}, trivialization_at := λ (b : B), (fiber_bundle.trivialization_at F₁ E₁ b).prod (fiber_bundle.trivialization_at F₂ E₂ b), mem_base_set_trivialization_at := _, trivialization_mem_atlas := _}
Pullbacks of fiber bundles #
Equations
- bundle.pullback.topological_space E f = λ (x : B'), _inst_1 (f x)
Definition of pullback.total_space.topological_space
, which we make irreducible.
Equations
- pullback_topology F E f = topological_space.induced bundle.total_space.proj _inst_1 ⊓ topological_space.induced (bundle.pullback.lift f) _inst_2
The topology on the total space of a pullback bundle is the coarsest topology for which both the projections to the base and the map to the original bundle are continuous.
Equations
- pullback.total_space.topological_space F E f = pullback_topology F E f
A fiber bundle trivialization can be pulled back to a trivialization on the pullback bundle.
Equations
- e.pullback f = {to_local_homeomorph := {to_local_equiv := {to_fun := λ (z : bundle.total_space F ⇑f *ᵖ E), (z.proj, (⇑e (bundle.pullback.lift ⇑f z)).snd), inv_fun := λ (y : B' × F), {proj := y.fst, snd := e.symm (⇑f y.fst) y.snd}, source := bundle.pullback.lift ⇑f ⁻¹' e.to_local_homeomorph.to_local_equiv.source, target := (⇑f ⁻¹' e.base_set) ×ˢ set.univ, map_source' := _, map_target' := _, left_inv' := _, right_inv' := _}, open_source := _, open_target := _, continuous_to_fun := _, continuous_inv_fun := _}, base_set := ⇑f ⁻¹' e.base_set, open_base_set := _, source_eq := _, target_eq := _, proj_to_fun := _}
Instances for trivialization.pullback
Equations
- fiber_bundle.pullback f = {total_space_mk_inducing := _, trivialization_atlas := {ef : trivialization F bundle.total_space.proj | ∃ (e : trivialization F bundle.total_space.proj) [_inst_9 : mem_trivialization_atlas e], ef = e.pullback f}, trivialization_at := λ (x : B'), (fiber_bundle.trivialization_at F E (⇑f x)).pullback f, mem_base_set_trivialization_at := _, trivialization_mem_atlas := _}