Skeleton of a category #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Define skeletal categories as categories in which any two isomorphic objects are equal.
Construct the skeleton of an arbitrary category by taking isomorphism classes, and show it is a skeleton of the original category.
In addition, construct the skeleton of a thin category as a partial ordering, and (noncomputably) show it is a skeleton of the original category. The advantage of this special case being handled separately is that lemmas and definitions about orderings can be used directly, for example for the subobject lattice. In addition, some of the commutative diagrams about the functors commute definitionally on the nose which is convenient in practice.
A category is skeletal if isomorphic objects are equal.
Equations
- category_theory.skeletal C = ∀ ⦃X Y : C⦄, category_theory.is_isomorphic X Y → X = Y
- skel : category_theory.skeletal D
- eqv : category_theory.is_equivalence F
is_skeleton_of C D F
says that F : D ⥤ C
exhibits D
as a skeletal full subcategory of C
,
in particular F
is a (strong) equivalence and D
is skeletal.
Instances for category_theory.is_skeleton_of
- category_theory.is_skeleton_of.has_sizeof_inst
- category_theory.thin_skeleton.is_skeleton_of_inhabited
If C
is thin and skeletal, then any naturally isomorphic functors to C
are equal.
If C
is thin and skeletal, D ⥤ C
is skeletal.
category_theory.functor_thin
shows it is thin also.
Construct the skeleton category as the induced category on the isomorphism classes, and derive its category structure.
Instances for category_theory.skeleton
Equations
The functor from the skeleton of C
to C
.
Instances for category_theory.from_skeleton
The equivalence between the skeleton and the category itself.
The skeleton
of C
given by choice is a skeleton of C
.
Equations
- category_theory.skeleton_is_skeleton C = {skel := _, eqv := category_theory.from_skeleton.is_equivalence C _inst_1}
Two categories which are categorically equivalent have skeletons with equivalent objects.
Equations
- e.skeleton_equiv = let f : category_theory.skeleton C ≌ category_theory.skeleton D := ((category_theory.skeleton_equivalence C).trans e).trans (category_theory.skeleton_equivalence D).symm in {to_fun := f.functor.obj, inv_fun := f.inverse.obj, left_inv := _, right_inv := _}
Construct the skeleton category by taking the quotient of objects. This construction gives a
preorder with nice definitional properties, but is only really appropriate for thin categories.
If your original category is not thin, you probably want to be using skeleton
instead of this.
Equations
Instances for category_theory.thin_skeleton
Equations
Equations
- category_theory.thin_skeleton.preorder C = {le := quotient.lift₂ (λ (X Y : C), nonempty (X ⟶ Y)) _, lt := λ (a b : category_theory.thin_skeleton C), quotient.lift₂ (λ (X Y : C), nonempty (X ⟶ Y)) _ a b ∧ ¬quotient.lift₂ (λ (X Y : C), nonempty (X ⟶ Y)) _ b a, le_refl := _, le_trans := _, lt_iff_le_not_le := _}
The functor from a category to its thin skeleton.
Equations
- category_theory.to_thin_skeleton C = {obj := quotient.mk (category_theory.is_isomorphic_setoid C), map := λ (X Y : C) (f : X ⟶ Y), category_theory.hom_of_le _, map_id' := _, map_comp' := _}
Instances for category_theory.to_thin_skeleton
The constructions here are intended to be used when the category C
is thin, even though
some of the statements can be shown without this assumption.
The thin skeleton is thin.
A functor C ⥤ D
computably lowers to a functor thin_skeleton C ⥤ thin_skeleton D
.
Equations
- category_theory.thin_skeleton.map F = {obj := quotient.map F.obj _, map := λ (X Y : category_theory.thin_skeleton C), quotient.rec_on_subsingleton₂ X Y (λ (x y : C) (k : ⟦x⟧ ⟶ ⟦y⟧), category_theory.hom_of_le _), map_id' := _, map_comp' := _}
Given a natural transformation F₁ ⟶ F₂
, induce a natural transformation map F₁ ⟶ map F₂
.
Equations
- category_theory.thin_skeleton.map_nat_trans k = {app := λ (X : category_theory.thin_skeleton C), quotient.rec_on_subsingleton X (λ (x : C), {down := {down := _}}), naturality' := _}
A functor C ⥤ D ⥤ E
computably lowers to a functor
thin_skeleton C ⥤ thin_skeleton D ⥤ thin_skeleton E
Equations
- category_theory.thin_skeleton.map₂ F = {obj := λ (x : category_theory.thin_skeleton C), {obj := λ (y : category_theory.thin_skeleton D), quotient.map₂ (λ (X : C) (Y : D), (F.obj X).obj Y) _ x y, map := λ (y₁ y₂ : category_theory.thin_skeleton D), quotient.rec_on_subsingleton x (λ (X : C), quotient.rec_on_subsingleton₂ y₁ y₂ (λ (Y₁ Y₂ : D) (hY : ⟦Y₁⟧ ⟶ ⟦Y₂⟧), category_theory.hom_of_le _)), map_id' := _, map_comp' := _}, map := λ (x₁ x₂ : category_theory.thin_skeleton C), quotient.rec_on_subsingleton₂ x₁ x₂ (λ (X₁ X₂ : C) (f : ⟦X₁⟧ ⟶ ⟦X₂⟧), {app := λ (y : category_theory.thin_skeleton D), quotient.rec_on_subsingleton y (λ (Y : D), category_theory.hom_of_le _), naturality' := _}), map_id' := _, map_comp' := _}
Use quotient.out
to create a functor out of the thin skeleton.
Equations
- category_theory.thin_skeleton.from_thin_skeleton C = {obj := quotient.out (category_theory.is_isomorphic_setoid C), map := λ (x y : category_theory.thin_skeleton C), quotient.rec_on_subsingleton₂ x y (λ (X Y : C) (f : ⟦X⟧ ⟶ ⟦Y⟧), (nonempty.some _).hom ≫ nonempty.some _ ≫ (nonempty.some _).inv), map_id' := _, map_comp' := _}
Instances for category_theory.thin_skeleton.from_thin_skeleton
Equations
- category_theory.thin_skeleton.from_thin_skeleton_equivalence C = {inverse := category_theory.to_thin_skeleton C _inst_1, unit_iso := category_theory.nat_iso.of_components (λ (x : category_theory.thin_skeleton C), quotient.rec_on_subsingleton x (λ (X : C), category_theory.eq_to_iso _)) _, counit_iso := category_theory.nat_iso.of_components (λ (X : C), nonempty.some _) _, functor_unit_iso_comp' := _}
The equivalence between the thin skeleton and the category itself.
Equations
- category_theory.thin_skeleton.thin_skeleton_partial_order = {le := preorder.le (category_theory.thin_skeleton.preorder C), lt := preorder.lt (category_theory.thin_skeleton.preorder C), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _}
from_thin_skeleton C
exhibits the thin skeleton as a skeleton.
Equations
- category_theory.thin_skeleton.thin_skeleton_is_skeleton = {skel := _, eqv := category_theory.thin_skeleton.from_thin_skeleton_equivalence C category_theory.thin_skeleton.thin_skeleton_is_skeleton._proof_4}
Equations
- category_theory.thin_skeleton.is_skeleton_of_inhabited = {default := category_theory.thin_skeleton.thin_skeleton_is_skeleton category_theory.thin_skeleton.is_skeleton_of_inhabited._proof_3}
An adjunction between thin categories gives an adjunction between their thin skeletons.
Equations
- category_theory.thin_skeleton.lower_adjunction R L h = category_theory.adjunction.mk_of_unit_counit {unit := {app := λ (X : category_theory.thin_skeleton C), let _inst : setoid C := category_theory.is_isomorphic_setoid C in quotient.rec_on_subsingleton X (λ (x : C), category_theory.hom_of_le _), naturality' := _}, counit := {app := λ (X : category_theory.thin_skeleton D), let _inst : setoid D := category_theory.is_isomorphic_setoid D in quotient.rec_on_subsingleton X (λ (x : D), category_theory.hom_of_le _), naturality' := _}, left_triangle' := _, right_triangle' := _}
When e : C ≌ α
is a categorical equivalence from a thin category C
to some partial order α
,
the thin_skeleton C
is order isomorphic to α
.