mathlib3 documentation

analysis.calculus.formal_multilinear_series

Formal multilinear series #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

In this file we define formal_multilinear_series π•œ E F to be a family of n-multilinear maps for all n, designed to model the sequence of derivatives of a function. In other files we use this notion to define C^n functions (called cont_diff in mathlib) and analytic functions.

Notations #

We use the notation E [Γ—n]β†’L[π•œ] F for the space of continuous multilinear maps on E^n with values in F. This is the space in which the n-th derivative of a function from E to F lives.

Tags #

multilinear, formal series

@[nolint]
def formal_multilinear_series (π•œ : Type u_1) (E : Type u_2) (F : Type u_3) [ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] :
Type (max u_2 u_3)

A formal multilinear series over a field π•œ, from E to F, is given by a family of multilinear maps from E^n to F for all n.

Equations
Instances for formal_multilinear_series
@[protected, instance]
@[protected, instance]
Equations
@[protected, instance]
def formal_multilinear_series.module {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] :
module π•œ (formal_multilinear_series π•œ E F)
Equations
@[protected]
theorem formal_multilinear_series.ext_iff {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p q : formal_multilinear_series π•œ E F} :
p = q ↔ βˆ€ (n : β„•), p n = q n
@[protected]
theorem formal_multilinear_series.ne_iff {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p q : formal_multilinear_series π•œ E F} :
p β‰  q ↔ βˆƒ (n : β„•), p n β‰  q n

Killing the zeroth coefficient in a formal multilinear series

Equations
@[simp]
@[simp]
theorem formal_multilinear_series.remove_zero_coeff_succ {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] (p : formal_multilinear_series π•œ E F) (n : β„•) :
p.remove_zero (n + 1) = p (n + 1)
theorem formal_multilinear_series.remove_zero_of_pos {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] (p : formal_multilinear_series π•œ E F) {n : β„•} (h : 0 < n) :
p.remove_zero n = p n
theorem formal_multilinear_series.congr {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] (p : formal_multilinear_series π•œ E F) {m n : β„•} {v : fin m β†’ E} {w : fin n β†’ E} (h1 : m = n) (h2 : βˆ€ (i : β„•) (him : i < m) (hin : i < n), v ⟨i, him⟩ = w ⟨i, hin⟩) :
⇑(p m) v = ⇑(p n) w

Convenience congruence lemma stating in a dependent setting that, if the arguments to a formal multilinear series are equal, then the values are also equal.

Composing each term pβ‚™ in a formal multilinear series with (u, ..., u) where u is a fixed continuous linear map, gives a new formal multilinear series p.comp_continuous_linear_map u.

Equations
@[simp]
theorem formal_multilinear_series.comp_continuous_linear_map_apply {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} {G : Type u_5} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] [add_comm_group G] [module π•œ G] [topological_space G] [topological_add_group G] [has_continuous_const_smul π•œ G] (p : formal_multilinear_series π•œ F G) (u : E β†’L[π•œ] F) (n : β„•) (v : fin n β†’ E) :
@[protected, simp]
def formal_multilinear_series.restrict_scalars (π•œ : Type u_1) {π•œ' : Type u_2} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] [comm_ring π•œ'] [has_smul π•œ π•œ'] [module π•œ' E] [has_continuous_const_smul π•œ' E] [is_scalar_tower π•œ π•œ' E] [module π•œ' F] [has_continuous_const_smul π•œ' F] [is_scalar_tower π•œ π•œ' F] (p : formal_multilinear_series π•œ' E F) :

Reinterpret a formal π•œ'-multilinear series as a formal π•œ-multilinear series.

Equations
noncomputable def formal_multilinear_series.shift {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] [normed_add_comm_group F] [normed_space π•œ F] (p : formal_multilinear_series π•œ E F) :
formal_multilinear_series π•œ E (E β†’L[π•œ] F)

Forgetting the zeroth term in a formal multilinear series, and interpreting the following terms as multilinear maps into E β†’L[π•œ] F. If p corresponds to the Taylor series of a function, then p.shift is the Taylor series of the derivative of the function.

Equations
noncomputable def formal_multilinear_series.unshift {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] [normed_add_comm_group F] [normed_space π•œ F] (q : formal_multilinear_series π•œ E (E β†’L[π•œ] F)) (z : F) :

Adding a zeroth term to a formal multilinear series taking values in E β†’L[π•œ] F. This corresponds to starting from a Taylor series for the derivative of a function, and building a Taylor series for the function itself.

Equations

Composing each term pβ‚™ in a formal multilinear series with a continuous linear map f on the left gives a new formal multilinear series f.comp_formal_multilinear_series p whose general term is f ∘ pβ‚™.

Equations
noncomputable def formal_multilinear_series.order {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] (p : formal_multilinear_series π•œ E F) :

The index of the first non-zero coefficient in p (or 0 if all coefficients are zero). This is the order of the isolated zero of an analytic function f at a point if p is the Taylor series of f at that point.

Equations
@[simp]
theorem formal_multilinear_series.order_zero {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] :
0.order = 0
theorem formal_multilinear_series.ne_zero_of_order_ne_zero {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} (hp : p.order β‰  0) :
p β‰  0
theorem formal_multilinear_series.order_eq_find {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} [decidable_pred (Ξ» (n : β„•), p n β‰  0)] (hp : βˆƒ (n : β„•), p n β‰  0) :
theorem formal_multilinear_series.order_eq_find' {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} [decidable_pred (Ξ» (n : β„•), p n β‰  0)] (hp : p β‰  0) :
theorem formal_multilinear_series.order_eq_zero_iff {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} (hp : p β‰  0) :
p.order = 0 ↔ p 0 β‰  0
theorem formal_multilinear_series.order_eq_zero_iff' {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} :
p.order = 0 ↔ p = 0 ∨ p 0 β‰  0
theorem formal_multilinear_series.apply_order_ne_zero {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} (hp : p β‰  0) :
theorem formal_multilinear_series.apply_order_ne_zero' {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} (hp : p.order β‰  0) :
theorem formal_multilinear_series.apply_eq_zero_of_lt_order {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [comm_ring π•œ] {n : β„•} [add_comm_group E] [module π•œ E] [topological_space E] [topological_add_group E] [has_continuous_const_smul π•œ E] [add_comm_group F] [module π•œ F] [topological_space F] [topological_add_group F] [has_continuous_const_smul π•œ F] {p : formal_multilinear_series π•œ E F} (hp : n < p.order) :
p n = 0
def formal_multilinear_series.coeff {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] (p : formal_multilinear_series π•œ π•œ E) (n : β„•) :
E

The nth coefficient of p when seen as a power series.

Equations
theorem formal_multilinear_series.mk_pi_field_coeff_eq {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] (p : formal_multilinear_series π•œ π•œ E) (n : β„•) :
@[simp]
theorem formal_multilinear_series.apply_eq_prod_smul_coeff {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {p : formal_multilinear_series π•œ π•œ E} {n : β„•} {y : fin n β†’ π•œ} :
⇑(p n) y = finset.univ.prod (Ξ» (i : fin n), y i) β€’ p.coeff n
theorem formal_multilinear_series.coeff_eq_zero {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {p : formal_multilinear_series π•œ π•œ E} {n : β„•} :
p.coeff n = 0 ↔ p n = 0
@[simp]
theorem formal_multilinear_series.apply_eq_pow_smul_coeff {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {p : formal_multilinear_series π•œ π•œ E} {n : β„•} {z : π•œ} :
⇑(p n) (Ξ» (_x : fin n), z) = z ^ n β€’ p.coeff n
@[simp]
noncomputable def formal_multilinear_series.fslope {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] (p : formal_multilinear_series π•œ π•œ E) :
formal_multilinear_series π•œ π•œ E

The formal counterpart of dslope, corresponding to the expansion of (f z - f 0) / z. If f has p as a power series, then dslope f has fslope p as a power series.

Equations
@[simp]
theorem formal_multilinear_series.coeff_fslope {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {p : formal_multilinear_series π•œ π•œ E} {n : β„•} :
p.fslope.coeff n = p.coeff (n + 1)
@[simp]
theorem formal_multilinear_series.coeff_iterate_fslope {π•œ : Type u_1} {E : Type u_3} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_space π•œ E] {p : formal_multilinear_series π•œ π•œ E} (k n : β„•) :

The formal multilinear series where all terms of positive degree are equal to zero, and the term of degree zero is c. It is the power series expansion of the constant function equal to c everywhere.

Equations
@[simp]
theorem const_formal_multilinear_series_apply {π•œ : Type u_1} {E : Type u_3} {F : Type u_4} [nontrivially_normed_field π•œ] [normed_add_comm_group E] [normed_add_comm_group F] [normed_space π•œ E] [normed_space π•œ F] {c : F} {n : β„•} (hn : n β‰  0) :