The category of bounded distributive lattices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines BddDistLat
, the category of bounded distributive lattices.
Note that this category is sometimes called DistLat
when
being a lattice is understood to entail having a bottom and a top element.
- to_DistLat : DistLat
- is_bounded_order : bounded_order ↥(self.to_DistLat)
The category of bounded distributive lattices with bounded lattice morphisms.
Instances for BddDistLat
- BddDistLat.has_sizeof_inst
- BddDistLat.has_coe_to_sort
- BddDistLat.inhabited
- BddDistLat.category_theory.large_category
- BddDistLat.category_theory.concrete_category
- BddDistLat.has_forget_to_DistLat
- BddDistLat.has_forget_to_BddLat
- HeytAlg.has_forget_to_Lat
- BoolAlg.has_forget_to_BddDistLat
- FinBddDistLat.has_forget_to_BddDistLat
@[protected, instance]
Equations
- BddDistLat.has_coe_to_sort = {coe := λ (X : BddDistLat), ↥(X.to_DistLat)}
@[protected, instance]
Equations
Construct a bundled BddDistLat
from a bounded_order
distrib_lattice
.
Equations
- BddDistLat.of α = BddDistLat.mk {α := α, str := _inst_1}
@[simp]
theorem
BddDistLat.coe_of
(α : Type u_1)
[distrib_lattice α]
[bounded_order α] :
↥(BddDistLat.of α) = α
@[protected, instance]
Turn a BddDistLat
into a BddLat
by forgetting it is distributive.
@[protected, instance]
Equations
- BddDistLat.has_forget_to_DistLat = {forget₂ := {obj := λ (X : BddDistLat), {α := ↥X, str := X.distrib_lattice}, map := λ (X Y : BddDistLat), bounded_lattice_hom.to_lattice_hom, map_id' := BddDistLat.has_forget_to_DistLat._proof_1, map_comp' := BddDistLat.has_forget_to_DistLat._proof_2}, forget_comp := BddDistLat.has_forget_to_DistLat._proof_3}
@[protected, instance]
@[simp]
Constructs an equivalence between bounded distributive lattices from an order isomorphism between them.
Equations
- BddDistLat.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
theorem
BddDistLat.iso.mk_inv
{α β : BddDistLat}
(e : ↥α ≃o ↥β) :
(BddDistLat.iso.mk e).inv = ↑(e.symm)
@[simp]
@[simp]
theorem
BddDistLat.dual_map
(X Y : BddDistLat)
(ᾰ : bounded_lattice_hom ↥(X.to_BddLat) ↥(Y.to_BddLat)) :
order_dual
as a functor.
Equations
- BddDistLat.dual = {obj := λ (X : BddDistLat), BddDistLat.of (↥X)ᵒᵈ, map := λ (X Y : BddDistLat), ⇑bounded_lattice_hom.dual, map_id' := BddDistLat.dual._proof_1, map_comp' := BddDistLat.dual._proof_2}
@[simp]
The equivalence between BddDistLat
and itself induced by order_dual
both ways.
Equations
- BddDistLat.dual_equiv = category_theory.equivalence.mk BddDistLat.dual BddDistLat.dual (category_theory.nat_iso.of_components (λ (X : BddDistLat), BddDistLat.iso.mk (order_iso.dual_dual ↥X)) BddDistLat.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : BddDistLat), BddDistLat.iso.mk (order_iso.dual_dual ↥X)) BddDistLat.dual_equiv._proof_2)
@[simp]