Multiplicity in Number Theory #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains results in number theory relating to multiplicity.
Main statements #
multiplicity.int.pow_sub_pow
is the lifting the exponent lemma for odd primes. We also prove several variations of the lemma.
References #
- [Wikipedia, Lifting-the-exponent lemma] (https://en.wikipedia.org/wiki/Lifting-the-exponent_lemma)
theorem
multiplicity.pow_sub_pow_of_prime
{R : Type u_1}
[comm_ring R]
[is_domain R]
[decidable_rel has_dvd.dvd]
{p : R}
(hp : prime p)
{x y : R}
(hxy : p ∣ x - y)
(hx : ¬p ∣ x)
{n : ℕ}
(hn : ¬p ∣ ↑n) :
multiplicity p (x ^ n - y ^ n) = multiplicity p (x - y)
theorem
multiplicity.nat.pow_sub_pow
{p : ℕ}
(hp : nat.prime p)
(hp1 : odd p)
{x y : ℕ}
(hxy : p ∣ x - y)
(hx : ¬p ∣ x)
(n : ℕ) :
multiplicity p (x ^ n - y ^ n) = multiplicity p (x - y) + multiplicity p n
theorem
int.two_pow_sub_pow'
{x y : ℤ}
(n : ℕ)
(hxy : 4 ∣ x - y)
(hx : ¬2 ∣ x) :
multiplicity 2 (x ^ n - y ^ n) = multiplicity 2 (x - y) + multiplicity 2 ↑n
theorem
int.two_pow_sub_pow
{x y : ℤ}
{n : ℕ}
(hxy : 2 ∣ x - y)
(hx : ¬2 ∣ x)
(hn : even n) :
multiplicity 2 (x ^ n - y ^ n) + 1 = multiplicity 2 (x + y) + multiplicity 2 (x - y) + multiplicity 2 ↑n
Lifting the exponent lemma for p = 2
theorem
nat.two_pow_sub_pow
{x y : ℕ}
(hxy : 2 ∣ x - y)
(hx : ¬2 ∣ x)
{n : ℕ}
(hn : even n) :
multiplicity 2 (x ^ n - y ^ n) + 1 = multiplicity 2 (x + y) + multiplicity 2 (x - y) + multiplicity 2 n
theorem
padic_val_nat.pow_two_sub_pow
{x y : ℕ}
(hyx : y < x)
(hxy : 2 ∣ x - y)
(hx : ¬2 ∣ x)
{n : ℕ}
(hn : 0 < n)
(hneven : even n) :
padic_val_nat 2 (x ^ n - y ^ n) + 1 = padic_val_nat 2 (x + y) + padic_val_nat 2 (x - y) + padic_val_nat 2 n