Ultrafilters #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
An ultrafilter is a minimal (maximal in the set order) proper filter. In this file we define
ultrafilter.of
: an ultrafilter that is less than or equal to a given filter;ultrafilter
: subtype of ultrafilters;ultrafilter.pure
:pure x
as anultrafiler
;ultrafilter.map
,ultrafilter.bind
,ultrafilter.comap
: operations on ultrafilters;hyperfilter
: the ultrafilter extending the cofinite filter.
- to_filter : filter α
- ne_bot' : self.to_filter.ne_bot
- le_of_le : ∀ (g : filter α), g.ne_bot → g ≤ self.to_filter → self.to_filter ≤ g
An ultrafilter is a minimal (maximal in the set order) proper filter.
Instances for ultrafilter
- ultrafilter.has_sizeof_inst
- ultrafilter.filter.has_coe_t
- ultrafilter.has_mem
- ultrafilter.has_pure
- ultrafilter.inhabited
- ultrafilter.nonempty
- ultrafilter.has_bind
- ultrafilter.functor
- ultrafilter.monad
- ultrafilter.is_lawful_monad
- ultrafilter.topological_space
- ultrafilter_compact
- ultrafilter.t2_space
- ultrafilter.totally_disconnected_space
- stone_cech_setoid
Equations
Equations
- ultrafilter.has_mem = {mem := λ (s : set α) (f : ultrafilter α), s ∈ ↑f}
Alias of the forward direction of ultrafilter.frequently_iff_eventually
.
If sᶜ ∉ f ↔ s ∈ f
, then f
is an ultrafilter. The other implication is given by
ultrafilter.compl_not_mem_iff
.
If f : filter α
is an atom, then it is an ultrafilter.
Pushforward for ultrafilters.
Equations
- ultrafilter.map m f = ultrafilter.of_compl_not_mem_iff (filter.map m ↑f) _
The pullback of an ultrafilter along an injection whose range is large with respect to the given ultrafilter.
The principal ultrafilter associated to a point x
.
Equations
- ultrafilter.has_pure = {pure := λ (α : Type u_1) (a : α), ultrafilter.of_compl_not_mem_iff (has_pure.pure a) _}
Equations
Monadic bind for ultrafilters, coming from the one on filters defined in terms of map and join.
Equations
Equations
- ultrafilter.functor = {map := ultrafilter.map, map_const := λ (α β : Type u_1), ultrafilter.map ∘ function.const β}
Equations
The ultrafilter lemma: Any proper filter is contained in an ultrafilter.
Alias of ultrafilter.exists_le
.
Construct an ultrafilter extending a given filter. The ultrafilter lemma is the assertion that such a filter exists; we use the axiom of choice to pick one.
Equations
The tendsto
relation can be checked on ultrafilters.
The ultrafilter extending the cofinite filter.
Equations
Alias of filter.nmem_hyperfilter_of_finite
.
Alias of filter.compl_mem_hyperfilter_of_finite
.
Ultrafilter extending the inf of a comapped ultrafilter and a principal ultrafilter.