Scott Topological Spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
A type of topological spaces whose notion of continuity is equivalent to continuity in ωCPOs.
Reference #
theorem
Scott.is_ωSup_iff_is_lub
{α : Type u}
[preorder α]
{c : omega_complete_partial_order.chain α}
{x : α} :
Scott.is_ωSup c x ↔ is_lub (set.range ⇑c) x
The characteristic function of open sets is monotone and preserves the limits of chains.
Equations
- Scott.is_open α s = omega_complete_partial_order.continuous' (λ (x : α), x ∈ s)
theorem
Scott.is_open.inter
(α : Type u)
[omega_complete_partial_order α]
(s t : set α) :
Scott.is_open α s → Scott.is_open α t → Scott.is_open α (s ∩ t)
theorem
Scott.is_open_sUnion
(α : Type u)
[omega_complete_partial_order α]
(s : set (set α))
(hs : ∀ (t : set α), t ∈ s → Scott.is_open α t) :
Scott.is_open α (⋃₀ s)
@[protected, instance]
Equations
- Scott.topological_space α = {is_open := Scott.is_open α _inst_1, is_open_univ := _, is_open_inter := _, is_open_sUnion := _}
theorem
is_ωSup_ωSup
{α : Type u_1}
[omega_complete_partial_order α]
(c : omega_complete_partial_order.chain α) :
theorem
Scott_continuous_of_continuous
{α : Type u_1}
{β : Type u_2}
[omega_complete_partial_order α]
[omega_complete_partial_order β]
(f : Scott α → Scott β)
(hf : continuous f) :
theorem
continuous_of_Scott_continuous
{α : Type u_1}
{β : Type u_2}
[omega_complete_partial_order α]
[omega_complete_partial_order β]
(f : Scott α → Scott β)
(hf : omega_complete_partial_order.continuous' f) :