Inverse and multiplication as order isomorphisms in ordered groups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
x ↦ x⁻¹
as an order-reversing equivalence.
Equations
- order_iso.inv α = {to_equiv := equiv.trans (equiv.inv α) order_dual.to_dual, map_rel_iff' := _}
x ↦ -x
as an order-reversing equivalence.
Equations
- order_iso.neg α = {to_equiv := equiv.trans (equiv.neg α) order_dual.to_dual, map_rel_iff' := _}
Alias of the forward direction of inv_le'
.
Alias of the forward direction of inv_le'
.
x ↦ a / x
as an order-reversing equivalence.
Equations
- order_iso.div_left a = {to_equiv := (equiv.div_left a).trans order_dual.to_dual, map_rel_iff' := _}
x ↦ a - x
as an order-reversing equivalence.
Equations
- order_iso.sub_left a = {to_equiv := (equiv.sub_left a).trans order_dual.to_dual, map_rel_iff' := _}
Alias of the forward direction of le_inv'
.
Alias of the forward direction of le_inv'
.
equiv.add_right
as an order_iso
. See also order_embedding.add_right
.
Equations
- order_iso.add_right a = {to_equiv := equiv.add_right a, map_rel_iff' := _}
equiv.mul_right
as an order_iso
. See also order_embedding.mul_right
.
Equations
- order_iso.mul_right a = {to_equiv := equiv.mul_right a, map_rel_iff' := _}
x ↦ x / a
as an order isomorphism.
Equations
- order_iso.div_right a = {to_equiv := equiv.div_right a, map_rel_iff' := _}
x ↦ x - a
as an order isomorphism.
Equations
- order_iso.sub_right a = {to_equiv := equiv.sub_right a, map_rel_iff' := _}
equiv.add_left
as an order_iso
. See also order_embedding.add_left
.
Equations
- order_iso.add_left a = {to_equiv := equiv.add_left a, map_rel_iff' := _}
equiv.mul_left
as an order_iso
. See also order_embedding.mul_left
.
Equations
- order_iso.mul_left a = {to_equiv := equiv.mul_left a, map_rel_iff' := _}