mathlib documentation

category_theory.category.Cat

Category of categories #

This file contains the definition of the category Cat of all categories. In this category objects are categories and morphisms are functors between these categories.

Implementation notes #

Though Cat is not a concrete category, we use bundled to define its carrier type.

@[nolint]
def category_theory.Cat  :
Type (max (u+1) u (v+1))

Category of categories.

Equations
@[protected, instance]
Equations

Construct a bundled Cat from the underlying type and the typeclass.

Equations
@[protected, instance]

Bicategory structure on Cat

Equations
@[protected, instance]

Cat is a strict bicategory.

Functor that gets the set of objects of a category. It is not called forget, because it is not a faithful functor.

Equations

Any isomorphism in Cat induces an equivalence of the underlying categories.

Equations

Embedding Type into Cat as discrete categories.

This ought to be modelled as a 2-functor!

Equations
@[protected, instance]
Equations