Category of categories #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains the definition of the category Cat
of all categories.
In this category objects are categories and
morphisms are functors between these categories.
Implementation notes #
Though Cat
is not a concrete category, we use bundled
to define
its carrier type.
Category of categories.
Equations
- category_theory.Cat.inhabited = {default := {α := Type u, str := category_theory.types}}
Construct a bundled Cat
from the underlying type and the typeclass.
Equations
Bicategory structure on Cat
Equations
- category_theory.Cat.bicategory = {to_category_struct := {to_quiver := {hom := λ (C D : category_theory.Cat), ↥C ⥤ ↥D}, id := λ (C : category_theory.Cat), 𝟭 ↥C, comp := λ (C D E : category_theory.Cat) (F : C ⟶ D) (G : D ⟶ E), F ⋙ G}, hom_category := λ (C D : category_theory.Cat), category_theory.functor.category ↥C ↥D, whisker_left := λ (C D E : category_theory.Cat) (F : C ⟶ D) (G H : D ⟶ E) (η : G ⟶ H), category_theory.whisker_left F η, whisker_right := λ (C D E : category_theory.Cat) (F G : C ⟶ D) (η : F ⟶ G) (H : D ⟶ E), category_theory.whisker_right η H, associator := λ (A B C D : category_theory.Cat), category_theory.functor.associator, left_unitor := λ (A B : category_theory.Cat), category_theory.functor.left_unitor, right_unitor := λ (A B : category_theory.Cat), category_theory.functor.right_unitor, whisker_left_id' := category_theory.Cat.bicategory._proof_1, whisker_left_comp' := category_theory.Cat.bicategory._proof_2, id_whisker_left' := category_theory.Cat.bicategory._proof_3, comp_whisker_left' := category_theory.Cat.bicategory._proof_4, id_whisker_right' := category_theory.Cat.bicategory._proof_5, comp_whisker_right' := category_theory.Cat.bicategory._proof_6, whisker_right_id' := category_theory.Cat.bicategory._proof_7, whisker_right_comp' := category_theory.Cat.bicategory._proof_8, whisker_assoc' := category_theory.Cat.bicategory._proof_9, whisker_exchange' := category_theory.Cat.bicategory._proof_10, pentagon' := category_theory.Cat.bicategory._proof_11, triangle' := category_theory.Cat.bicategory._proof_12}
Cat
is a strict bicategory.
Category structure on Cat
Functor that gets the set of objects of a category. It is not
called forget
, because it is not a faithful functor.
Equations
- category_theory.Cat.objects = {obj := λ (C : category_theory.Cat), ↥C, map := λ (C D : category_theory.Cat) (F : C ⟶ D), F.obj, map_id' := category_theory.Cat.objects._proof_1, map_comp' := category_theory.Cat.objects._proof_2}
Instances for category_theory.Cat.objects
Any isomorphism in Cat
induces an equivalence of the underlying categories.
Equations
- category_theory.Cat.equiv_of_iso γ = {functor := γ.hom, inverse := γ.inv, unit_iso := category_theory.eq_to_iso _, counit_iso := category_theory.eq_to_iso _, functor_unit_iso_comp' := _}
Embedding Type
into Cat
as discrete categories.
This ought to be modelled as a 2-functor!
Equations
- category_theory.Type_to_Cat = {obj := λ (X : Type u), category_theory.Cat.of (category_theory.discrete X), map := λ (X Y : Type u) (f : X ⟶ Y), category_theory.discrete.functor (category_theory.discrete.mk ∘ f), map_id' := category_theory.Type_to_Cat._proof_1, map_comp' := category_theory.Type_to_Cat._proof_2}
Instances for category_theory.Type_to_Cat
Equations
- category_theory.Type_to_Cat.full = {preimage := λ (X Y : Type u) (F : category_theory.Type_to_Cat.obj X ⟶ category_theory.Type_to_Cat.obj Y), category_theory.discrete.as ∘ F.obj ∘ category_theory.discrete.mk, witness' := category_theory.Type_to_Cat.full._proof_1}