Idempotent completeness and homological complexes #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains simplifications lemmas for categories
karoubi (homological_complex C c)
and the construction of an equivalence
of categories karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c
.
When the category C
is idempotent complete, it is shown that
homological_complex (karoubi C) c
is also idempotent complete.
The functor karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c
,
on objects.
The functor karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c
,
on morphisms.
The functor karoubi (homological_complex C c) ⥤ homological_complex (karoubi C) c
.
Equations
- category_theory.idempotents.karoubi_homological_complex_equivalence.functor = {obj := category_theory.idempotents.karoubi_homological_complex_equivalence.functor.obj c, map := λ (P Q : category_theory.idempotents.karoubi (homological_complex C c)) (f : P ⟶ Q), category_theory.idempotents.karoubi_homological_complex_equivalence.functor.map f, map_id' := _, map_comp' := _}
The functor homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)
,
on objects
The functor homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)
,
on morphisms
The functor homological_complex (karoubi C) c ⥤ karoubi (homological_complex C c)
.
Equations
- category_theory.idempotents.karoubi_homological_complex_equivalence.inverse = {obj := category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.obj c, map := λ (K L : homological_complex (category_theory.idempotents.karoubi C) c) (f : K ⟶ L), category_theory.idempotents.karoubi_homological_complex_equivalence.inverse.map f, map_id' := _, map_comp' := _}
The counit isomorphism of the equivalence
karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c
.
Equations
- category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso = category_theory.eq_to_iso category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso._proof_1
The unit isomorphism of the equivalence
karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c
.
Equations
- category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso = {hom := {app := λ (P : category_theory.idempotents.karoubi (homological_complex C c)), {f := {f := λ (n : ι), P.p.f n, comm' := _}, comm := _}, naturality' := _}, inv := {app := λ (P : category_theory.idempotents.karoubi (homological_complex C c)), {f := {f := λ (n : ι), P.p.f n, comm' := _}, comm := _}, naturality' := _}, hom_inv_id' := _, inv_hom_id' := _}
The equivalence karoubi (homological_complex C c) ≌ homological_complex (karoubi C) c
.
Equations
- category_theory.idempotents.karoubi_homological_complex_equivalence C c = {functor := category_theory.idempotents.karoubi_homological_complex_equivalence.functor c, inverse := category_theory.idempotents.karoubi_homological_complex_equivalence.inverse c, unit_iso := category_theory.idempotents.karoubi_homological_complex_equivalence.unit_iso c, counit_iso := category_theory.idempotents.karoubi_homological_complex_equivalence.counit_iso c, functor_unit_iso_comp' := _}
The equivalence karoubi (chain_complex C α) ≌ chain_complex (karoubi C) α
.
The equivalence karoubi (cochain_complex C α) ≌ cochain_complex (karoubi C) α
.