Lemmas about densely linearly ordered groups. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
theorem
le_of_forall_lt_one_mul_le
{α : Type u_1}
[group α]
[linear_order α]
[covariant_class α α has_mul.mul has_le.le]
[densely_ordered α]
{a b : α}
(h : ∀ (ε : α), ε < 1 → a * ε ≤ b) :
a ≤ b
theorem
le_of_forall_neg_add_le
{α : Type u_1}
[add_group α]
[linear_order α]
[covariant_class α α has_add.add has_le.le]
[densely_ordered α]
{a b : α}
(h : ∀ (ε : α), ε < 0 → a + ε ≤ b) :
a ≤ b
theorem
le_of_forall_one_lt_div_le
{α : Type u_1}
[group α]
[linear_order α]
[covariant_class α α has_mul.mul has_le.le]
[densely_ordered α]
{a b : α}
(h : ∀ (ε : α), 1 < ε → a / ε ≤ b) :
a ≤ b
theorem
le_of_forall_pos_sub_le
{α : Type u_1}
[add_group α]
[linear_order α]
[covariant_class α α has_add.add has_le.le]
[densely_ordered α]
{a b : α}
(h : ∀ (ε : α), 0 < ε → a - ε ≤ b) :
a ≤ b
theorem
le_iff_forall_pos_le_add
{α : Type u_1}
[add_group α]
[linear_order α]
[covariant_class α α has_add.add has_le.le]
[densely_ordered α]
{a b : α} :
theorem
le_iff_forall_one_lt_le_mul
{α : Type u_1}
[group α]
[linear_order α]
[covariant_class α α has_mul.mul has_le.le]
[densely_ordered α]
{a b : α} :
theorem
le_iff_forall_neg_add_le
{α : Type u_1}
[add_group α]
[linear_order α]
[covariant_class α α has_add.add has_le.le]
[densely_ordered α]
{a b : α} :
theorem
le_iff_forall_lt_one_mul_le
{α : Type u_1}
[group α]
[linear_order α]
[covariant_class α α has_mul.mul has_le.le]
[densely_ordered α]
{a b : α} :